
On the relationship between syntactic and semantic encoding in
metric space language models

Whitney Tabor1

1University of Connecticut
whitney.tabor@uconn.edu

May 28, 2021
To appear in Journal of Cognitive Science

Abstract

The relationship between form and meaning is central to the theory
of language. Traditionally, syntax and semantics are viewed as two
different levels of representation. Based on insights from the intersection
of dynamical systems theory and the theory of computation, and guided
by linguistic data, I argue that there is only one space, a syntactic-semantic
one. I model it here as a stable, countably infinite attractor of an iterated
map dynamical system. One advantage of this approach is that it supports
a unified treatment of grammatical and ungrammatical processing.
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1. Introduction

1.1 Standard approach: separate syntax and semantics

It has long seemed reasonable in the theory of linguistics1 to make a distinc-
tion between syntactic representation and semantic representation. Chomsky
(1957) noted that (1) is a grammatical English sentence, while (2) is not, even
though neither sentence makes sense.

(1) Colorless green ideas sleep furiously.
(2) Furiously sleep ideas green colorless.

Therefore, he argued, a theory that attempts to equate (un)grammaticality
with semantic (ill-)/well-formedness is a non-starter. In connection with this
view, it is common to note that grammatical and semantic well-formedness are
doubly dissociable. The sentences above illustrate well-formed syntax with
ill-formed semantics (1) and ill-formed syntax with ill-formed semantics (2)
but we can also observe ill-formed syntax with well-formed semantics (3)
and, of course, there are many strings like (4) that are both syntactically and
semantically well-formed.

(3) Those dog that barking all night lonely.
(4) Some cats that live in high-rises are content.

The term “semantics” has several meanings in the literature. Sometimes
it is used to refer to the meanings that are associated with linguistic forms.
I will refer to this kind of “semantics" as semantic content or meaning. For
example, the semantic content of “riparian" is associated with the bank of a
river, the semantic content of “[V]-ed" is event of type [V] that occurred prior
to the moment of speaking. In formalized treatments of meaning, the semantic
content of a linguistic expression can be precisely indicated by a well-formed
formula (e.g., Steedman, 2000). I will use the term "semantic form" to refer to

1Thanks to Jon Sprouse, the participants in the 2020 SemSpace workshop, and two
anonymous reviewers for very helpful feedback.
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the structure (in, for example, 2nd-order logic) of such formulas. “Syntactic
form", by contrast, refers to the structure assigned by a theory of syntax to a
particular linguistic expression when it is interpreted in a particular way. The
term, ‘semantics" is also used to refer to a mapping posited by some theories
between syntactic form and semantic form. I will say “form → meaning
mapping" for this sense.

The standard account thus identifies three important elements: syntactic
form, semantic form, and semantic content. Focusing, for the moment, on
just syntactic and semantic form, formalized theories of language generally
posit a very close parallelism between them, so much that one might wonder
if they, in fact, belong to a single encoding stratum. Nevertheless, transfor-
mational grammars (e.g., Government and Binding, Minimalism) and most
unification-based grammars (e.g., LFG, HPSG, many versions of Construc-
tion Grammar, The Parallel Architecture) assign the two to different strata.
The main motivations for the separation seem to be (1) language behavior
effects a relation between language entities and pragmatic entities or actions
so it is natural to assume that the mind has an encoding mirroring each side
of this relation; (2) syntacticians have made considerable headway in delin-
eating possible forms while semanticists and philosophers have shed much
light on the nature of meanings; the two seem to have different properties;
thus it seems natural to posit one representation space for each and a mapping
between them; (3) model theory, based on Tarski’s formalization of truth for
formal languages (Tarski, 1933), specifies amapping from forms tomeanings;
although Tarski’s theory is not generally taken to be a theory of human mental
nature, it has formed the basis for models of computer “minds" (e.g., denota-
tional semantics— Gordon, 2012 [1979]) and human minds (e.g., Kamp and
Reyle, 1993; Heim, 1983) in which the mental part of the system has both an
encoding of form and an encoding of meaning.

Further motivation for positing two separate encodings comes from spe-
cific linguistic findings. Jackendoff (2002) argues that non-referential ele-
ments like English "do"-support "do" ("Do you want a salmonberry?") and
dummy "it" and "there" ("It is difficult to persuade Deirdre."/"There is a
moose in the garden") provide evidence for a syntax-phonology map that has
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no involvement of a third stratum, “Semantics", where the semantic content
of world-linked linguistic elements is encoded. Another kind of argument
concerns words, such as likely and probable (5), that have very similar mean-
ings, but nevertheless show different privileges of combination. Analysts
have noted that this pattern can be explained if we posit that likely identifies
its subject with the subject of its complement clause when its complement
clause is infinitival, while probable does not take an infinitival complement
clause and thus makes no such identification, a distinction in syntactic form.

(5) a. It is likely that Mary will win the race.
b. It is probable that Mary will win the race.
c. Mary is likely to win the race.
d. * Mary is probable to win the race.

Both likely and probable mean something like occurring with high probabil-
ity, so their meanings alone do not seem to predict their different patterning.
Moreover, the rule of subject-equation that applies to (5c) can be expressed in
a formula which makes no reference to the specific content of likely, and the
same rule supports computation of the correct meaning for many other pred-
icates as well, again independent of their contents. Such examples are thus
efficiently accounted for under separation of syntactic and semantic strata.

These and related observations have prompted many theorists of language
to adopt accounts in which syntax and semantics are represented in two dis-
tinct spaces.2 In the most precisely worked out cases, the syntactic space
is populated by symbolic objects generated by combinatorial grammars and
there is a mapping from syntactic rules to semantic interpretation rules (e.g.,
Montague, 1970; Steedman, 2000) that describe combinatorial semantic ob-
jects. The topology of both of these spaces is fully discrete, meaning none of
its elements form a continuum. In the semantic space, the discrete combinato-
rial elements are further combined with the meanings of the words to produce

2Here, by “space" I mean essentially the same thing as “stratum" and “level" as I have
used them above. I’m switching to “space" now because this term is more common in
the literature on dynamical systems, which I will discuss shortly.
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fully referential semantic objects whose truth can be evaluated with respect
to a world. This framework offers a natural account of the judgment that
sentences like (1) are syntactically well-formed and semantically ill-formed.
In particular, the theory specifies syntactic rules which generate a combina-
torial structure for the sentence (supporting a positive syntactic judgment)
but semantic constraints make its interpretation compatible with no possible
world, or at best with only a rather peculiar world. If we take semantic ill-
formedness to be produced by a failure of alignment with the ordinary world,
the positing of distinct spaces directly supports the possibility of syntactic
well-formedness combined with semantic ill-formedness.

1.2 Alternative approach: a single, metric stratum

Despite the successes of the standard assumptions, I advocate an alternative
approach here, in which there is only one space and that space is a complete
metric space. For present purposes, an important feature of the completeness
is that the space has continuum properties, for these support simultaneously
the modeling of gradient phenomena and the modeling of recursive symbolic
processes, as I explain below.

My approach, called “fractal grammars", is, inmanyways, closely aligned
other work that seeks to integrate discrete symbolic characterizations of lan-
guage structure with systems whose states lie in a continuum—particularly
neural-symbolic integration and vector space semantics approaches (e.g.,
Bowman, 2016; Cho et al., 2017; Coecke et al., 2010; Levy and Goldberg,
2014; Levy et al., 2000; Plate, 1995; Sadrzadeh et al., 2017; Smolensky and
Legendre, 2006; Socher, 2014). In a slightly different way, fractal grammars
are also closely related to “Dynamic Syntax" (Kempson et al., 2001). In
that framework, language interpretations, which are expressed in a higher
order logical language composed of well-formed formulas, are formed incre-
mentally as words are processed in order of occurrence. Dynamic Syntax,
like fractal grammars, thus also has only one, integrated syntactic-semantic
stratum. Recently, Dynamic Syntax has been linked with vector space se-
mantic approaches which are well-suited to model some gradient phenomena
(Sadrzadeh et al., 2017). Nevertheless, despite, these similarities, there are
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some notable differences between fractal grammars and nearly all of the ap-
proaches just mentioned (Cho et al., 2017, is a partial exception): fractal
grammars lie in metric spaces, not vector spaces; these metric spaces are the
state spaces of feedback dynamical systems, and fractal sets play a central
role. In General Discussion, I come back to these differences and clarify why
I think this alternative approach is worth considering.

As a foundation for making this case, I review several challenges faced
by the classical model:

Challenge 1: Semantics without syntax. Syntax, as standardly
understood, uses inviolable symbolic rules to form the constituent
structures on the basis of which semantics computes meaning.
Therefore, for (3) above, the language system should fail to com-
pute a meaning. Why, then, do we easily make sense of the
sentence, while clearly finding it ungrammatical?
Challenge 2: There seem to be degrees of semantic ill-formedness.
For example, (6) is semantically odd, but not quite as odd as (7).

(6) Fred drank the cup of ball bearings.
(7) Fred drank the tree.

In the second case I take Fred to have swallowed the tree by gulp-
ing with no chewing, and, not for example, to have used a grinder
to dissolve the tree into a liquid form ahead of drinking. Classical
semantic models (e.g., Montague, 1970) are truth-conditional,
and truth is taken to be binary-valued, so, in those models, it is
not clear how to model gradience.
Challenge 3: There seem to be degrees of syntactic ill-formedness.
For example, Sprouse et al. (2016); Villata et al. (2020) found,
in grammaticality judgment experiments on extraction of con-
stituents from linguistic islands, that all the islands they tested
showed tell-tale signs of grammatical compromise, but the effect
sizes were weaker in some than others (8).
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(8) a. Which puzzle did you think that the candidate
solved? [GRAMMATICAL]

b. Which puzzle did you wonder whether the candi-
date solved? [ISLAND - WEAK]

c. Which puzzle did you smile because the candidate
solved? [ISLAND - STRONG]

Again, because the classical models employ symbolic structures,
it is not obvious how they can address syntactic gradience.
Challenge 4: Linguists have long noted that syntactic violations
usually produce a more severe sense of badness than semantic
ones. This broad intuition, however, may be skewed by frequent
experience with syntactic violations which produce an uninter-
pretable string and correspondingly frequent experience with
semantic violations which are interpretable. However, several
carefully designed experiments in which all stimuli are easily in-
terpretable still find a stark magnitude difference which arguably
corresponds to the semantics/syntax divide (Keller, 2000; So-
race and Keller, 2005; Villata, 2017; Villata et al., 2016). For
example, Sorace and Keller’s “soft constraints" include definite-
ness, verb meaning, and referentiality (arguably semantic) while
their “hard constraints" include violations of subject-auxiliary
word order, of subject-verb agreement, and of resumptive pro-
noun constraints (arguably syntactic). Villata et al. find that
interference effects from “criterial features" which govern syn-
tactic movement produce much more disturbance than interfer-
ence effects from “non-criterial features” which involve semantic
differences in noun meanings.
Challenge 5: In sentence processing, difficulty produced by ill-
formedness at one point in a sentence (e.g, in garden-path sen-
tences) often manifests over several subsequent words (so-called
“spillover effects"). Under the standard model the relevant ill-
formedness is usually associated with a single failure of symbolic
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unification. Thus, it is not clear why the effects of ill-formedness
should appear also on other words than the one that produced the
conflict.

1.3 Discrete update dynamical system

To address these challenges, I will employ a dynamical system. Let x be
a point in a complete metric space, - . A nonautonomous discrete update
dynamical system is a function 5 : - → - that updates x and possibly
receives input from an environment simultaneously:

x(C + 1) = 5 (x(C), C) (1)

Here, the variable C (“time") starts at 0 and gets incremented by 1 at each
iteration of the function. x(C) gives the state of the system at time C, and
x(C + 1) gives the state of the system one time step later. It is natural to think
about this system as a brain that may get input from the world (the dependence
of 5 on C supports this) and also may also, simultaneously, evolve its mental
state by internal cause (the dependence of 5 on x supports this). I will use this
system to model the word-by-word processing of sentences (as in speaking,
listening, and some forms of reading). At each time step, one word arrives.
Note that the dependence of x, through 5 , on its previous value is a case of
“feedback dynamics".

Including feedback dynamics supports two other relevant features: (i) the
systemmay organize itself around attractors, i.e., sets to which it returns when
it is displaced (“perturbed") up to some positive radius; (ii) such attractors
may be fractal sets. Informally, fractal sets are sets that exhibit a particu-
lar complex form at arbitrarily small scales. They are useful because they
support modeling recursive combinatorial structures, and these are arguably
fundamental to language form and meaning (Montague, 1970). Moreover,
the employment of attractors offers a new approach to the syntax/semantics
distinction. Specifically, there is a grammatical manifold, a proper subset
of the space - on which the system travels when it is processing perfectly
grammatical input. This manifold is an attractor, so if the system gets knocked
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off the manifold by a not-too-large amount, it will come back onto it. En-
countering a semantically or syntactically ill-formed word knocks the system
off the manifold, and it generally takes it several steps to return. In the
case of semantic ill-formedness, the errant word only knocks the system a
small distance off the manifold, near enough that, even though it may take
a few steps to recover, the model never makes a category error. Syntactic
ill-formedness knocks the system much farther off the manifold. In this case,
it still eventually returns, but for a time, it visits parts of the space that are
out of synch with the sequence of words—in this case, it is making category
errors (expecting words of certain types, and getting words of completely
different types). Because everything is occurring in a metric space, there is a
natural way to model gradience: it is a function of the (real-valued) distance
of the system state from the grammatical manifold. Moreover, there is only
one space, so the challenges associated with the two-space system described
above are avoided.

Here, I explore this new way of thinking about form and meaning through
some simple formal examples worked out in the framework of fractal gram-
mars (Tabor, 2000, 2003, 2009, 2015), an approach to computing with dy-
namical systems (Moore, 1998; Siegelmann and Sontag, 1994; Siegelmann,
1999). Fractal grammars support combinatorial computation in a complete
metric space.

Section 2 reviews fractal grammars. Section 3 explores the novel per-
spective on the syntax-semantics distinction. Section 4 concludes.

2. Encoding of syntactic and semantic structure

2.1 Formal Languages

To be clear about syntactic structure, it is useful to consider formal lan-
guages. A standard approach is start with a finite alphabet of symbols,
Σ = {01, 02, . . . , 0: } for : a positive integer. Though it is standard to refer to
Σ as an “alphabet", I will refer to it here as a “vocabulary" since this usage is
more typical in discussions of natural languages. A language L is indicated
by a characteristic function, !, on finite strings drawn from the vocabulary—
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the function has value 1 if its input is a grammatical string of the language and
has value 0 otherwise. Here, for convenience, we include one-sided infinite
strings as well as finite strings:

! : Σ∞ → {0, 1} (2)

Languages of this form come in two main types, computable and non-
computable (Siegelmann, 1999). It is useful (e.g., Kozen, 1997) to organize
the computable languages via theChomskyHierarchywhich identifies a series
of classes of formal languages, each successive class including the members
of the previous class as well as additional languages. A key breakpoint
occurs between the finite-state languages, which occupy the lowest rung on
the Chomsky Hierarchy and the context-free languages, on the next rung
up. The context free languages are the simplest class bearing the property
that a computer for recognizing one of them must be able to distinguish
an infinite number of states. A very simple form of computer, called a
Pushdown Automaton can recognize any context free language. The key
mechanism in a pushdown automaton is a storage device called a pushdown
stack. The pushdown stack holds a sequence of symbols in a kind of infinitely
extendable tube such that, at any point, only the last symbol is available for
manipulation. Pushdown stacks are useful for keeping track of the complex
phrasal embedding structure that is typical of natural languages, and virtually
every precisely formalized theory of syntax uses them or an equivalent.

It is useful, at this point to consider some neural network technology.
Neural networks are a class of dynamical systems which have proven useful
for modeling a number of psychological functions.

2.2 Recurrent neural networks for symbol processing

Discrete update recurrent neural networks (RNNs) with real- (or complex-)
valued units are dynamical systems of the form (1). For present purposes, I
will employ them as symbol processors. A standard strategy (Elman, 1991)
is to specify a layered network. The input space encodes the words of Σ
as unique one-hot vectors—all zeros except for a single one. These map
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forward to one or more hidden layers, at least one of which has recurrent
connections. The last hidden layer maps to an output layer, which has the
same dimensionality as the input layer—i.e., one unit for every member of
the vocabulary. The idea is to configure the weights of the network in such
a way that it implements the function !. To set the stage for this, we assume
that words of sentences of L are presented to the network one at a time, in
sequence. After each word is presented, the activation of the output layer is
computed. We require that at every juncture between words inL, all and only
the possible next-words from L are activated on the output layer. In order
to perform such a task successfully, the neural network has to implement
a sufficiently powerful processor to handle the syntax of language L. For
example, if the language were a context free language, but the network was
only capable of inhabiting a finite number of states, it would fail at the task.

It is not hard to see that, for a given finite state language, if one builds
a network with enough hidden units, a system with these properties can
be set up to implement ! for any finite state language. Without going into
detail, it is fairly easy tomake a recurrent network that activates (depending on
appropriate input) a unique hidden unit corresponding to each of finitely many
states. The hidden-to-output weights can then map from these finite states to
next-symbol possibilities on the output layer. But for infinite state languages—
e.g., context free languages—a more efficient use of state information is
needed. The reason is that, since all information mediating between input
and output must pass through the hidden layer, the hidden layer needs to
instantiate infinitely many distinct patterns. It certainly will not work to
adopt the strategy used for the finite state model just described of having each
hidden unit either be on or off—for# hidden units, there are only 2# activation
patterns of this form. The only option is to distinguish different degrees of
activation of the units. Therefore, we assume the units take their activations
in a real interval of positive length (e.g., (0, 1)), yielding no shortage of states.
However, to finitely specify a computational procedure that will actually work
using an infinity of gradations of values of hidden activations, we need some
way of organizing the states systematically. Fractal sets provide a way (Tabor,
2000).
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2.3 Fractal grammars

I take a fractal to be a set whose Hausdorff dimension exceeds its Lebesgue
covering dimension. This definition picks out sets that have a complex pattern
that repeats itself at arbitrarily small scales.3

Natural language syntax appears to have a recursive character that, up to
our current empirical detection, can be weakly generated by a context free
grammar and structurally specified by a mildly context-sensitive grammar
(Savitch, 1987). Consider a discrete-update, one hidden-layer recurrent neural
network, '##1, that always starts, at the beginning of processing, with its
hidden layer in an initial state G0 in metric space - and jumps from point to
point as specified by equation 1 where the inputs that are indexed by the time
parameter C are grammatical in a language, L, which we wish to model with
the network. Let � be the set of points in - that are visited by the network
during the processing of all possible sequences of grammatical sentences. We
refer to � as the grammatical manifold associated with L under '##1. To
accurately model L in the prediction sense specified in the previous section,
G must be structured so that each state contains accurate information about
possible future transitions, given possible future inputs. The core idea of
fractal grammars is to encode the recursively structured information in the
symbol sequences of L by specifying a fractal G.

Let - be a complete metric space.4 For # a positive natural number, let
58 : - → - , 8 ∈ 1, . . . , # be a set of maps on - with domains, 38 ⊆ - ,
respectively. A dynamical automaton, ��, is such a set of maps combined
with a single point, G0 ∈ - , called the initial state:

�� = (-, { 58 : 8 ∈ {1, . . . , #}}, G0) (3)

A dynamical automaton, ��, defines a formal language LDA as follows.

3There are many ways of defining fractals, so I adopt this definition tentatively. This
definition, due to Mandelbrot, highlights so-called mono-fractals which have the same
pattern at all scales. It may turn out, for example, that for some natural languagemodeling,
multi-fractals, with structure that varies in systematic way across scales, aremore suitable.

4Ametric space is a topological space in which a distance metric is defined. A metric
space is complete if all Cauchy sequences converge to points in the space.
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Consider the one-sided infinite string, f = f1f2 . . . where f9 ∈ {1, . . . , #}
for 9 ∈ 1, 2, . . .. If, for every 9 ∈ 1, 2, . . ., the point G 9 = 5f 9 (G 9−1) ∈ 3 9+1,
then f is a member of LDA . For a finite string f with final symbol f ,
if the previous condition holds for all symbols in the string prior to f and
5f (G:−1) is not in any of the 38’s, then f is a member of LDA . In other
words, LDA is the language of allowed sequences of function applications
of ��, given the domain restrictions of the 58’s.

As in the case of a recurrent neural network as discussed above, the
grammatical manifold of a dynamical automaton, ��, is the set of points in
- that is visited by �� under all function applications specified by strings
of LDA starting from the initial state G0. A fractal grammar is a dynamical
automaton whose grammatical manifold is a fractal.

2.4 An example fractal grammar

We consider the non-finite-state phrasal embedding language shown in Table
1. This language can be modeled by a pushdown automaton with three stack
symbols, which I’ll call �, �, and �. Whenever an 0 occurs, the automaton
pushes � onto the stack, and correspondingly for 1 and 2. When a 3 occurs,
the automaton removes the last element from the stack, making visible the
item below it. In all cases, knowledge of what symbol is on the top of the
stack provides exactly the information needed to tell which words can come
next in the sequence.

To process all strings in LABCD the set of stack states that the system
needs to distinguish are exactly the members of {�, �, �}∗.5 In other words,
there needs to be a distinct hidden unit state for eachmember of this (countably
infinite) set. In support of this, Figure 1 shows a fractal-based system for
assigning hidden states to stack states. Given this assignment scheme, we can
define a dynamical automaton, ������ whose language is LABCD by the
function specifications in Table 2.

5Σ∗ for Σ an vocabulary specifies the set of all finite-length strings that can be formed
from Σ, including the empty string. Σ∞ specifies the set of all infinite-length strings of
these symbols.
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S→ A B C D
A→ a (S)
B→ b (S)
C→ c (S)
D→ d

Table 1. The grammar of a pushdown automaton language, LABCD , that
cannot be generated by a finite state machine. The grammar specifies sentences
by symbol replacement. A rule of form “" → �1�2 . . . � " means “Replace
" with the sequence �1�2 . . . � ". Replacement proceeds until no more
replacement is possible. The resulting string is deemed a grammatical sentence.
Parentheses specify optionality, so, for example, “A→ a (S)” means “’A’ can be
replaced by ’a’ OR ’A’ can be replaced by ’a S”’. An example sentence of this
language is [a b [a b c [a b c d] d] c [a b c d] d] (Square brackets highlight the
recursive embedding but are not part of the string.)

At the beginning of each sentence, the processor starts at
(1/2
1/2

)
(cor-

responding to empty stack in a pushdown automaton) and returns to this
point when a sentence has been parsed. It cycles on trajectories of the form
lower-right→ lower-left→ upper-left at different scales for the processing of
sequences at different levels of embedding.

An advantage of fractal grammars is that they can be implemented in
certain types of neural networks (e.g., ones with gating units— Tabor, 2000)
and their method of implementing recursion appears to be closely related to
the methods induced by widely used learning neural networks (Tabor, 2011).

2.5 Instability of affine fractal grammars

One problem with the fractal grammars described so far, however, is that they
lack asymptotic stability. An attractor of a dynamical system is asymptotically
stable if trajectories that start out near the attractor converge on it as time goes
to infinity. In several senses, it is desirable to work with systems that have
asymptotic stability. First, the behavior of an asymptotically stable system is
strongly governed by the properties of the attractor; this can make it easier to
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Figure 1. A map from the members of {�, �, �}* to middles of hypotenuses of
the Sierpinski Triangle. The horizontal and vertical dimensions correspond to
unit activations in the hidden layer of a neural network for processing LABCD .

understand the system. Second, a system with asymptotic stability is reliable:
as long as it is not perturbed too far away from the relevant attractor, it will
consistently exhibit the dynamics associated with the attractor. Third, human
language processing by native speakers shows signs of being asymptotically
stable with respect to an attractor associated with grammatical processing.
Focusing first on language comprehension, though a language perceiver may
encounter various disturbances in the form of noise that interferes with de-
tecting the signal—an unfamiliar word, a syntactically difficult sentence, a
garden path sentence, or some other disturbance—such events do not usually
flummox the language system for very long. After hearing a few more words,
the person is generally back on track with understanding what is being said.6.

6It it is true that a person in this circumstance may persist in failing to understand what
is being talked about if, for example, a very important word has been missed. However,
this rarely results in failure of the language processing system itself: the person continues
being able to parse upcoming sentences. What is disturbed is not the person’s language
interpretation ability, but their understanding of the relation between the language and
the situation at hand.
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Function Domain
51 (x) = x −

(1/2
0

)
G1 > 1/2 and G2 < 1/2

52 (x) = x +
( 0
1/2

)
G1 < 1/2 and G2 < 1/2

53 (x) = 2
(
x −

( 0
1/2

) )
G1 < 1/2 and G2 > 1/2

50 (x) = 1
2x +

(1/2
0

)
X

Table 2. A dynamical automaton ������ whose grammatical manifold is
the stack map in Figure 1. The metric space - is the 2-dimensional plane of
points (G1, G2) with G1, G2 ∈ R and Euclidean distance metric The initial state is
®G =

(1/2
1/2

)
.

Turning to language production, a native speaker’s ability to speak may be
temporarily compromised by an interruption, a powerful realization, or even a
self-generated verbal confusion, but this situation rarely lasts long: even after
experiencing such a difficulty, the speaker will generally continue talking.

What happens if a disturbance is introduced into the fractal processor
described above? Figure 2a shows the effect of one small perturbation that
occurred on a single word of otherwise perfectly grammatical language. Ev-
idently, a small perturbation produces a very long-lived disturbance—there
is no sign in the numerical data of asymptotic reconvergence. A useful way
of assessing the stability of an attractor in a deterministic dynamical system
is to compute its Lyapunov exponents. The Lyapunov exponents measure the
average rate of expansion/contraction of the space around the attractor. If a
dynamical system has no negative Lyapunov exponents, the system cannot
be asymptotically stable. Tabor (2002) defines a natural extension of the
definition of Lyapunov exponents to non-deterministic systems with proba-
bilistic transitions. Under this definition, if we consider a version of LABCD
in which there is no probability mass on strings with infinitely deep embed-
dings, then the Lyapunov exponents of the system are all 0. Thus, the system
is not asymptotically stable (Tabor, 2002).
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a. b.

Figure 2. a. Blue circles: A sample grammatical trajectory. Red circles:
A trajectory derived from the grammatical trajectory by introducing a small
displacement after a few steps of grammatical processing and then continuing to
drive the system with the grammatical string thereafter. b. Displacement from
the grammatical trajectory versus time.

2.6 Stable dynamical automata

To prepare the ground for building stable dynamical automata, Tabor (2015)
introduces the notion of a manifold labeling: a labeling is a map from each
point on the manifold to a subset of the vocabulary, Σ. The labeling specifies
which symbols are allowed under grammatical processing from each point.
Suppose a labeled dynamical automaton is perturbed up to some positive
radius from its grammaticalmanifold and then driven forever by a grammatical
sequence of symbols. If it always converges back to the grammatical manifold
in such a way that, eventually, the next symbol read is consistent with the
labeling of the nearest point on the manifold, then the system is said to exhibit
Back in Kansas stability.7 In other words, a system with Back in Kansas
stability has the ability to recover from perturbations: as long as it gets a long
enough string of grammatical input, it will return to properly processing the
language.

7After returning from her adventures in Oz, Dorothy seemed to settle back into the
ordinariness of life in Kansas, once sufficient time had passed.
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Tabor (2015) shows that stable dynamical automata exist for some context
free languages. If stable dynamical automata can model natural languages,
I suggest that they offer a new way of understanding the syntax-semantics
relation. The next section explores this idea by examining a specific case.

3. Syntax and semantics in fractal grammar models

As in Tabor (2015), I focus on a mirror recursion language. Mirror recursion
refers to languages whose core recursive structure has the form of a grammar
like that in Table 3. Corballis (2007), argues that mirror recursion is a key
type of recursion in natural languages. For example, English object relative
clauses show amirror recursive pattern with respect to subject verb agreement
(9).

(9) a. The cats howl.
b. The cat howls.
c. * The cats howls.
d. * The cat howl.
e. The cats who the girl chases howl.
f. The cat who the girls chase howls.
g. The cats who the girls chase howl. etc.

S → a (S) b
S → x (S) y

Table 3. A grammar that generates the mirror-recursion language, MR1. An
example of a string of MR1 is [a [x [a [a b] b] y] b] (square brackets indicate
embedding relationships). If we let a = N[Sg], b = V[Sg], x = N[Pl], and y =
V[Pl], then the grammar specifies the possible verb agreement patterns in English
center-embedded object relative clauses, some of which are illustrated in (9).

To explain the proposed new approach to syntax and semantics, I will
work with the languageMR1 specified by the grammar of Table 3. In Figure
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3, the transitions indicated in bold blue font specify a dynamical automa-
ton, ��"'1, forMR1. By contrast, when all of the tra-nsitions in Figure
3 are considered (bold blue and normal font black), the system becomes a
dynamical automaton for the language {0, 1, G, H}∞. In the present case,
we are interested in strings which have a finite series of transitions which
are grammatical under ��"'1 (bold blue font in Figure 3) followed by a
finite series of transitions that may include some steps that are not permit-
ted ��"'1 (normal font black), followed by a concluding, infinite series
of grammatical transitions. In dynamical systems terms, when the middle
segment includes ungrammatical transitions, it produces a perturbation of the
trajectory away from the grammatical manifold. Figure 4 shows an exam-
ple of the system’s behavior under a fairly strong perturbation produced by
replacing one grammatical transition with an ungrammatical transition in an
otherwise grammatical string. In this case, unlike the example described in
section 2.5, the effect of the perturbation dies out after 6 time steps. In fact,
this system is globally Back in Kansas stable: no matter where it is perturbed
to, a sufficiently long sequence of grammatical symbols will eventually bring
it back onto the manifold (Tabor, 2015).

Perturbations of this system can be divided into two types. Suppose
the system is processing a grammatical string of 0’s, 1’s, G’s, and H’s. At
some point, C, in the processing, a rogue word, FB4<0=><, is inserted in
place of whatever (grammatical) continuation was about to occur and then
the sequence continues as before (having skipped the word that would have
occurred where the rogue word was). If, as I assume here, FB4<0=>< only
displaces the processing a small amount—within a radius, AB4<0=><, whose
magnitude is contingent on where on the grammatical manifold the processor
would have landed had FB4<0=>< not occurred—then the effect on future
processing is minimal: the model will follow a path that has the same future
expectations as a corresponding grammatical sentence that had a normal word
in place of the rogue word. In this case, we say the model has experienced a
f(ractal)g(rammar)-semantic anomaly. This is the first type of perturbation.
However, if at C, a different rogue word, FBH=0=>< is presented and FBH=0=><
displaces the state sufficiently far away, then the system will, for one or more
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Figure 3. Bold blue maps: ��"'1, a dynamical automaton for processing
MR1. The space, - , is the plane with Euclidean distance metric. The initial
state is

(0
0

)
. The dark lines indicate a partition of the plane. The two vertical

partition boundaries extend to positive infinity and negative infinity. The left
horizontal partition boundary extends infinitely to the left, while the right one
extends infinitely to the right. The update functions within each partition com-
partment specify the state update associated with each possible symbol emission
for states in the compartment. This system is Back in Kansas stable under
any perturbation. All maps: when both bold blue and normal-font black maps
are included, perturbations from the grammatical manifold of ��"'1 can be
introduced by having the system process words in an incorrect order.

words in the future, make erroneous predictions aboutwhich continuations are
grammatically possible, where by “grammatically possible", I mean possible
had the replacement byFBH=0=>< not occurred. In this case, we say the system
has experienced a fg-syntactic anomaly and we say that some ungrammatical
processing has occurred. In both cases, if the system is Back in Kansas stable,
then it will eventually converge back onto the grammatical manifold and it
will not make any incorrect predictions after it has done that.

The main question of interest here is whether fg-semantic anomaly and
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a. b.

Figure 4. Response of ��"'1 to perturbation. a. Grammatical manifold
(blue) and perturbed trajectory (red). b. The difference between the perturbed
trajectory and the corresponding grammatical trajectory over time.

fg-syntactic anomaly bear a resemblance to natural language semantic and
syntactic anomaly respectively. I will consider these questions shortly. Before
doing so, it is helpful to address some foundational issues.

First, does each point on the grammatical manifold have an associated
AB4<0=>< > 0? If so, then grammaticality, and the attendant notion, fg-
semantic anomaly, have a kind of local robustness–there is a mild level of
disturbance that each sentence can tolerate without any future transitions
being ungrammatical (i.e., all transitions of the bold blue type in Figure
3). The answer is "yes": this can be shown for ��"'1 via the method of
inverse iteration described in Tabor (2009). The Appendix sketches a proof.
Here, I provide a graphical demonstration of the core insight. First, consider
the partition indicated by the dark lines in Figure 3. Each compartment is
labeled with its possible next-symbols in bold. Now consider two points,
B6A0< and BB4<0=>< corresponding to the grammatical state and the rogue
state at time C. If, going forward in time, some grammatical trajectory of
the system causes the future of B6A0< and the future of BB4<0=>< to be
on opposite sides of the decision boundaries in Figure 3, then the rogue
trajectory can give rise to an erroneous prediction at that point. This would
violate the definition of fg-semantic anomaly. Therefore, to find out which
points around the grammatical manifold will not produce this effect, we can
iterate the boundary points under the inverse of the system to find out all the
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places where they separate points from one another. Figure 5 shows the result
of this test. Indeed, the backward iterations of the boundaries never land on
points on the manifold and they form a partition such that each compartment
contains at most one point of the grammatical manifold. This indicates that
fg-semantic anomaly is a possibility at every word.

Figure 5. The grammatical manifold (blue circles) along with the image of
the decision boundaries (black lines) under the inverse of ��"'1 (where it is
invertible). Every point on the grammatical manifold lies strictly inside a distinct
compartment of the partition defined by the inverse image.

What about fg-syntactic anomaly. Does it exist? The answer is yes
because all thatFBH=0=><must do to produce fg-syntactic anomaly is displace
the state across a decision boundary itself, immediately creating the possibility
for failed prediction. It’s also possible for FBH=0=>< to displace the system
mildly on a particular (e.g., deeply embedded) word—not across a decision
boundary, but outside of the local fg-semantic anomaly compartment. While
this may produce no incorrect predictions on immediately succeeding words,
its effects can be felt later once the expansive terms in the matrices of Figure
3 sufficiently magnify the displacement.
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4. General Discussion

Now I turn to assessing fg-semantic and fg-syntactic anomaly in relation to
natural semantic and syntactic anomaly. I will first do this by asking how this
new approach fares on Challenges 1-6 above, and then return to some of the
examples mentioned at the beginning of the paper that are usually taken as
evidence for separate syntax and semantics.

4.1 Challenges 1-6

Regarding Challenge 1, accounting for sentences like (3) that are syntactically
anomalous but understandable, the fractal grammar approach has the appeal-
ing property that it is not completely flummoxed by fg-syntactic anomaly; it
continues to process and eventually recovers from the anomaly. This is in
line with processing studies that indicate that humans presented with difficult
garden path sentences strive to reanalyze them, though perhaps not always
fully successfully (Christianson et al., 2001). Indeed, a number of proposals
have been made about mechanisms of reanalysis (Ferreira and Henderson,
1998; Fodor and Inoue, 1998). Most of these are designed to address garden
path sentences which temporarily mislead but then a revision of interpretation
leads to a grammatical analysis. Something different is needed in the case
of examples like (3), for there is no grammatical solution—for reanalysis to
succeed, word addition, along with morphological modification would need
to occur. And yet, while interpretation is possible in the case of examples
like (3), it is not clear that the perceiver is satisfied with the sentence after
understanding it, as would be expected if the system actually performed a
reanalysis. So something else seems to be going on. What could this be? A
natural answer is optimization—the system puts the words together as best it
can, even when they do not go together perfectly. A potentially advantageous
property of the fractal grammar approach is that it offers a general framework
(dynamical stability) which can, under certain relatively mild conditions, be
interpreted as an optimization process via the theory of Lyapunov functions.
Consider a dynamical system that converges to an attractor. A Lyapunov func-
tion is a continuous function from the state space of the dynamical system to
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a real number such that convergence to the attractor corresponds to gradient
descent on the function. An example from physics is a function that expresses
potential energy of a swinging pendulum as a function of its state (velocity
and position). If there is damping, then the pendulum will eventually arrive
at it lowest energy state (hanging straight down, not moving)–it optimizes its
energy state by making it as low as possible. One can often identify such a
function for a dynamical system that is governed by an attractor. An opti-
mization interpretation is especially desirable in the present context because,
by being explicit about the tradeoffs among different forms of solution, op-
timization accounts can derive heterogeneity (e.g., syntactic versus semantic
badness) where other approaches are forced to stipulate it.

Regarding Challenge 2 (graded semantic anomaly) traditional approaches
generally appeal to graded properties of the world. Under the traditional
theory these are unrelated to gradience effects in syntax (Challenge 3). The
current theory is simpler inasmuch as it is in a position to generate both
kinds of gradience from the same aspect of system structure. The method
of Lyapunov functions may again offer a natural avenue by supporting the
definition of an energy-like quantity associated with attractor basins. On this
view, higher energy states are expected to be associated with greater degrees
of anomaly.

Regarding Challenge 4, the generally smaller magnitude of semantic
anomaly than syntactic anomaly, the fractal grammar treatment indeed makes
this claim, providedwe compare cases in the samegrammatical neighborhood.
One may reasonably ask, Is this claim predicted by the model or is it just
available to it because it has two different kinds of anomaly, one of which
happens to be weaker? Put another way, is there anything that the model
correctly predicts to be correlated with the kind of anomaly that is associated
with an open set that contains the grammatical manifold versus the kind that
is associated with the complement of this set? I am aware of one positive
answer to this question: semantic anomalies in natural languages appear to
lie on continua that include well-formed utterances. For example, picking
up on examples (6) and (7) above, it is normal to drink water, odder to
drink syrup, even more troublesome to drink motor oil, rather disturbing to
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drink ball bearings, etc. Such cases illustrate how semantic anomaly, unlike
syntactic anomaly is contiguous with well-formedness. In this regard, the
fractal grammar account gets the story right: the milder anomaly type, fg-
semantic anomaly, is the one the model treats as spatially contiguous with
fully grammatical processing.

Regarding Challenge 5, “spillover effects”—the fact that the disruption
associated with anomaly in human processing tends to be spread over several
words following the anomalous event—stable fractal grammar models more
or less predict this. Stability is characterized by a contraction of the state space
around the grammatical manifold, so that, over time, the trajectories converge
on the manifold. Interestingly, the degree of displacement of the system from
the manifold is not monotonic in time in the model—for example, as noted
above, a small disturbance in a deep center-embedding can give rise to a large
disturbance several words later. There is some evidence that this might be on
the right track for natural language center embeddings (King and Just, 1991;
Gibson, 1998). However, there is not a clearly-established generalization in
the empirical sentence processing arena about where effects will occur and
how strong they will be except that they occur following anomalies and they
sometimes have puzzling non-monotonicities. In fact, little work has focused
on this question—further testing is needed. The current account provides
predictions that could drive such investigation.

4.2 Syntax without semantics / semantics without syntax

The simple answer to how fractal grammars can handle the evidence men-
tioned above for syntax without semantics and semantics without syntax is
that there can be layers of information structure in a dynamical system, even
though the architecture is not stratified. On close inspection, the arguments
for separation given in Introduction are all of a circumstantial sort: some
important kind of calculation seems to involve information only of type A
or only of type B. Such facts do not logically require separation of the in-
formation into two different spaces, since in each case, the unobserved type
of information could simply remain unused in a particular computation even
though it is available. As indicated in the main section of the paper, the
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current proposal is, roughly, that the difference between syntax and seman-
tics is a scale difference, with syntactic distinctions corresponding to bigger
distances and semantic distinctions corresponding to smaller distances. This
is only a rough portrayal because it glosses over the fact that the actual cutoff
between small/semantic and big/syntactic is differently structured in different
parts of the space. Another claim of the framework is that starting and ending
in the null stack region (e.g., the middle compartment of Figure 3) as well as
consistency with the labeling at every step should correspond to a judgment of
grammatical well-formedness for the processed string (though not necessarily
semantic well-formedness).

Although I do not yet know how to optimally write an elaborate fractal
grammar for a natural language (there are many variants possible for any
given symbolic system which differ in geometry and have different properties
when the full range of ungrammatical strings is considered), it is nevertheless
possible to see that the proposed framework offers new angles on two of the
cases mentioned in Introduction.

First, regarding likely versus probable, the framework makes a prediction
that could be tested empirically: even though probable fails to grammatically
accommodate an infinitival complement via equation of lower and upper
subjects, a sentence like (5d) is predicted to be judged better than a sentence
like (10) and also to significantly elicit an interpretation similar to themeaning
of (5c) in an unconstrained interpretation task, in contrast to (10), which is
predicted to elicit no consistent interpretation.

(10) Mary is red to win the race.

The reason for these predictions is that, in a fractal grammar model of a
relevant portion of English, the vector encoding of probable will be rela-
tively close to the vector encoding of likely in virtue of their shared semantic
content, so that, modulo some assumptions about the size/shape of the man-
ifold, the sentence (5d) will cause the model to follow a trajectory that is
structurally similar that of (5c), even though the model suffers an ungram-
matical displacement at “probable". By contrast, the encoding of red is far
from being compatible with the syntactic context so that sentence (10) will
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produce a more severely displaced trajectory, possibly one that is not close
to any complementation-structure part of the manifold after the processing of
red.8 The behavior that the model predicts for (5d) is related to what is called
“coercion" in the linguistic literature.9

4.3 Why dynamical systems and why fractals?

As I noted in the introduction, the approach described in this paper diverges
from classical, discrete symbolic approaches to language modeling in a way
that resembles other, currently vigorously investigated divergences from the
classical, and yet it also differs from these in several ways. For example,
many computational linguists focus on vector spaceswhile few are specifically
concerned with metric spaces. Also, even though it is common to introduce a
norm into a vector space, which makes it a metric space, it is rare for language
modelers who take this route to investigate either attractors or fractals.

Why do I think these unusual choices are warranted?
First, many of the arguments in this paper as well as many other empirical

observations (e.g., Spivey, 2007) indicate that metric properties are a promi-
nent organizational feature of the language systems of humans. Relatedly,
artificial neural networks (ANNs) which learn from data (e.g., Deep Learning
models) are fundamentally metric computers, for they discover structure by
navigating on the basis of statistical similarity (Rumelhart et al., 1995). I
suggest that the metric structure is doing much of the work for both humans
and ANNs. Vector space structure is appealing for analysis purposes because
linear spaces are easier to analyze—indeed, much of the headway that has
been made in numerical dynamical systems theory relies on making local

8In making the predictions above about humans, I am banking on the assumption that
alternative contexts which can make sentence (10) interpretable are so obscure that most
participants will not think of them—e.g., Mary has painted herself red for the purpose
of winning the race, Mary’s winning the race is an act of strongly showing her “red"
(Native American? Republican? Communist?) side.

9Villata et al. (2019) describe a dynamical coercion model which, though not a fractal
grammarmodel, nevertheless illustrates some aspects of how linguistic coercion canwork
in a language processing dynamical system.
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linear approximations to globally nonlinear systems. However, in naturally
arising systems, including humans, I suspect linearity is not of the essence.

Second, regarding attractors, the key feature that makes attractors relevant
is topological contraction: a set of higher dimension is mapped to a set of
lower dimension, in many cases (including all those considered here) to a set
of Lebesgue measure 0. This is a natural description of grammar: from a rich
semantic world or a world rich with noise, that is to say, a world exhibiting
continuum properties, one distills a discrete essence which tracks structural
distinctions and nothing more. I think the interest in formalisms that bridge
between discrete symbolic encodings and continuum semantic and behav-
ioral properties, including neural network approaches (e.g., Christiansen and
Chater, 1999; Elman, 1991; Devlin et al., 2019; Mikolov et al., 2013), vector-
space/symbolic integration (e.g., Coecke et al., 2010; Plate, 1995; Smolensky
and Legendre, 2006) and hybrids (e.g., Asher et al., 2016; Bowman, 2016;
Socher, 2014; Wĳnholds et al., 2020) are motivated by the insight that look-
ing at grammar alone is an unhelpfully rarified approach—one needs to see
the richness that grammar abstracts over in order to properly understand
grammar itself. While vector-space/symbolic integration approaches take a
helpful step in this direction, dynamical systems theory provides important
additional insight by offering a principled understanding of the sources of
order in symmetries (Golubitsky and Stewart, 2002).

Finally, regarding fractals, most current vector space/symbolic approaches
do not mention them, but I think they might turn out to be relevant. For ex-
ample, Coecke et al. (2010); Plate (1995); Smolensky and Legendre (2006)
provide calculi for compositionally structured objects in vector spaces but
I am not aware that any of these approaches has examined the (geo)metric
structure of fully worked out infinite-state grammars within the formalisms.
In all of these cases, some kind of tensor operation, involving nested instances
of multiplication distributed over addition does the core work of assigning
roles to entities and composing simpler entities into more complex ones.
This structure is very similar to the iterated affine structure in the dynami-
cal automata I have described above.10 In dynamical automata it is through

10��"'1 is not fully affine but it is piecewise affine.
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this iterated interaction of multiplication and addition (in chaos theory terms,
“stretching” and “folding”) that fractal structures arise. A key requirement is
that the computation take place on a bounded set. Boundedness seems de-
sirable both for computational tractability and neural plausibility. Assuming
that this feature is generally adopted, I suspect that fully worked out gram-
matical treatments in vector space/symbolic approaches will also turn out to
have fractal forms.

4.4 Shortcomings

It must be acknowledged that the examples of fractal grammars given here and
in other papers are all very toy examples and they give a single, arguably too
narrow abstraction of natural language. For example, they do not incorporate
any of the rich semantic structure that current semantic theories have worked
out. The points in the fg-semantically anomalous open sets surrounding the
grammatical manifold in a model like ��"'1 are small pieces of undiffer-
entiated continuum. It will be important to explore richer encoding models
that are closer to real natural language to see if the dynamical mechanisms
will still have their beneficial properties in a richer context.

At least two additional formal features of the current model clearly need to
be shifted to bring the modeling closer to human natural language processing.

One is the discrete map approximation. Much empirical work on incre-
mental sentence processing shows that participants exhibit complex, tempo-
rally extended behavior upon processing each word. Typical measures are
self-paced reading times, eye-movements in reading to points in a scenewhich
the language is talking about, or changes in the brain’s electro-magnetic field.
The discrete map models employed here perform an instantaneous compu-
tation in response to each word so they are not very suitable for capturing
these detailed dynamics. For this, differential equation models (among these,
continuous-time recurrent neural networks) are more suitable. It is thus
desirable to figure out how to implement fractal encoding in these.

At first glance, it might seem that a dynamical automata are not compo-
sitional in the sense of being systems that recursively combine simpler types
into more complex types. Nevertheless, when it is in the middle of processing
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a sentence with open dependencies, the system has a compositional encoding
of the stack in the sense that its current state, interpreted as a vector, can be
analyzed as the sum of a series of vectors, each at a different scale, and each
of which specifies a stack symbol (see Tabor, 2011). However, compared to
tensor-based encodings of semantic structure in vector space semantic models
which contain full semantic information about all sentential constituents, this
encoding is very impoverished.

In line with this point, a second feature that arguably needs adjusting is
the empty-stack termination property that the current fractal grammars inherit
from classical formal automaton design. Because it returns to the same state
after every sentence, when the model has finished parsing a sentence, it
has lost track of all the information expressed by the sentence. This is not
realistic as a model of human sentence processing, for humans learn things
from sentences. Immediately after processing them, they can often address
questions or otherwise make use of the information provided by the language.
Indeed, though I have advocated above for metric spaces, dynamics, and
fractals over classical model-theoretic semantics and vector space semantic
models, I must acknowledge that the latter two types have an advantage over
current fractal grammars in that they are accumulate semantic knowledge as
they progress through a sentence. A similarly informationally constructive
version of fractal grammar processing is thus desirable.

4.5 Conclusion

All of these caveats are, in some sense, about the richness of the encodings.
Although the caveats are nontrivial, the current approach is unusual in its
ability to embrace both ideal and imperfect language processing. Robustness
of this sort is a very desirable property—clearly humans have such robustness.
It thus seems worth seeking a way to bring together robustness and richness.
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A. Existence of a grammatical basin

By a grammatical basin I mean an open set containing the grammatical
manifold such that, if the system is perturbed (possibly repeately) in such
a way that the perturbation never crosses the basin’s boundary, all future
transitions will be grammatical.
Thm. The grammatical manifold of dynamical automaton ��"'1 (Figure
3) lies in a grammatical basin.
Sketch of proof:
1. Except for those in the middle compartment, all the transition functions in
Figure 3 are homeomorphisms (1-1 continuous bĳections whose inverses are
also continuous). Therefore, iteration up to the end of a sentence is invertible.
Also, due to the topology-preserving properties of homeomorophisms, the
inverse system maps partitions to partitions. Since the union of a countable
infinity of partitions is a partition, the inverse future of the boundary set (the
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boundary set is indicated by the dark lines in Figure 3) is a partition. I’ll call
this partition, IFBS, for "Inverse future of the boundary set".
2. By the categorical future of a point G0 in the state space, I mean the
branching sequence of symbols that can be grammatically emitted when the
system is started at G0. If two points are in the same compartment of IFBS,
they have the same categorical future under within-sentence forward iteration.
This is true because the only way two points can have a different categorical
future is if, under grammatical iteration, they eventually arrive on different
sides of a boundary. However, points in the same compartment of IFBS will
never arrive at such a state during a single sentence, since IFBS is the union
of all possible within-sentence histories of the boundary set.
3. The next question is whether the grammar manifold lies strictly in the
interior of IFBS. IFBS can be tracked by iterating the single point, p =

(
−1/2
0

)
under the inverse language: the left boundary set is the set of all points directly
above and below this point union the set of all points directly to the left of
this point. The rest of the negative side of IFBS can be understood as the
union of iterations of p under sequences of inverse b’s and y’s from the
lefthand compartments of the partition. But these points never coincide with
the boundary: the G coordinate of p is strictly to the left of the point ( 00 )
associated with sentence end, and strictly to the right of the points associated
with the penultimate words—

( −1
1

)
and

( −1
−1

)
. Since the inverse b and y

transforms are affine with positive slope, this relation is preserved under
iteration. Analogous conditions ensure the persistent non-coincidence of the
partition boundaries with the grammatical manifold in the right-half plane,
under inverse iteration of the a and x transforms.
4. So far, these arguments imply that a point in the same compartment of IFBS
as a grammatical point will have the same categorical future through sentence
end. But at sentence end, since one of these two points is a grammatical point,
both points have to be in the middle compartment of Figure 3. Therefore,
on the next step, their two trajectories coincide. This implements contraction
and makes the futures of the two trajectories identical (and grammatical) from
that time on. In other words, the claims of the theorem are satisfied.
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