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Abstract

Many theories of sentence processing are based on the idea
that a discrete, symbolic grammar defines all of the structures
relevant for parsing, effectively supervising the parser as it
selects from those structures the one that best fits the input.
However, local coherence effects, where people’s parsing be-
havior suggests they are entertaining locally viable but glob-
ally impossible structures, suggest that this may not always be
the case. We introduce a self-organized sentence processing
(SOSP) model of local coherence effects and use it to demon-
strate how predictions about timing effects (a major source of
psycholinguistic data and a shortcoming of many previous dy-
namical parsers) can be derived directly from a harmony (well-
formedness) function covering both grammatical and ungram-
matical structures. This framework allows us to simulate the
processing of any set of lexical features and attachment links,
making it widely applicable to psycholinguistic phenomena.

Keywords: sentence processing, local coherence effects, dy-
namical systems models, self-organization

Introduction
The current, most fully-developed models of online sentence
processing adopt an assumption which may be called gram-
mar supervision. With grammar supervision, a symbolic
grammar specifies the universe of structures possible for lan-
guage comprehension and production, and the parser only
considers those grammatical structures. An example is sur-
prisal theory (Hale, 2001; Levy, 2008), in which the parser
distributes probability over all grammatical structures com-
patible with the current input at each word. The process-
ing time for each word is proportional to how much change
in the probability distribution is needed after incorporating
a new word (the Kullback-Leibler divergence between prior
and posterior distributions estimated from a large corpus).
This kind of theory has been massively successful in mod-
eling reading times in both experimentally designed stimuli
and natural corpora (Levy, 2008; N. J. Smith & Levy, 2013).

However, empirical studies over the past several decades
have identified a number of phenomena that challenge the
grammar-supervision hypothesis. We focus on local coher-
ence effects (Ex. (1); Bicknell, Levy, & Demberg, 2009;
Konieczny, Müller, Hachmann, Schwarzkopf, & Wolfer,
2009; Kukona, Cho, Magnuson, & Tabor, 2014; Levy, Bick-
nell, Slattery, & Rayner, 2009; Paape & Vasishth, 2015; Ta-
bor, Galantucci, & Richardson, 2004). Early-arriving words
make it so that, if the grammar were supervising, only one
parse would be possible, but when later words are perceived,
people show evidence of entertaining a second, conflicting

parse motivated by the later-arriving words. For example, the
reduced forms in of Ex. (1) (i.e., without who was) showed
slowed reading at tossed/thrown relative to the unreduced
form, but this effect was significantly larger for (1-a) than for
(1-b) (Tabor et al., 2004).

(1) a. The coach smiled at the player (who was) tossed
the Frisbee by the opposing team.

b. The coach smiled at the player (who was) thrown
the Frisbee by the opposing team.

We can make sense of this result if we assume that the
words the player tossed. . . (but not thrown) cause the parser
to construct an active clause with the player as its subject,
even though English grammar mandates that, in this con-
text, tossed be a passive verb heading a reduced relative
clause modifying the player. This process is inconsistent with
grammar-supervision theories, but it is naturally predicted if
parsing is governed by principles of self-organization.1

Self-organized sentence processing (SOSP; Kempen &
Vosse, 1989; Stevenson, 1994; Tabor & Hutchins, 2004; van
der Velde & de Kamps, 2006; Vosse & Kempen, 2000, 2009;
Cho et al., 2017; G. Smith, Franck, & Tabor, 2018; Gerth
& beim Graben, 2009)) is an approach to modeling sentence
processing which does not assume grammar supervision. In-
stead, in analogy to many physical chemical and biological
processes (see, e.g., Haken, 1983), parses self-organize (with-
out any controller or external supervision) via continuous, lo-
cal, bottom-up interaction among small pieces of syntactic
tree structure (treelets) activated by the words that have been
perceived or are being produced. In SOSP, feedback inter-
actions among the treelets generally drive the formation of
structure consistent with the grammar, but when two or more
incompatible structures receive bottom-up support, the sys-
tem can stabilize in an ungrammatical state of conflict, caus-
ing processing difficulty. Such models have produced plausi-
ble accounts of center embedding vs. right branching, garden
path effects, lexical ambiguity processing (Vosse & Kempen,
2000), length effects (Tabor & Hutchins, 2004), and agree-
ment attraction (G. Smith et al., 2018), among others.

1Levy et al. (2009) argue that surprisal can account for Tabor et
al. (2004) with a noisy channel assumption—words may be misper-
ceived (e.g., at was actually and in Ex. (1-a)). Cho, Goldrick, and
Smolensky (2017) present a similar approach in a dynamical model.
However, not all local coherence effects are plausibly amenable to
this explanation (Kukona et al., 2014; Paape & Vasishth, 2015).
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Figure 1: A snap-shot of SOSP-TH parsing a fragment of
Ex. (1) showing a subset of competitive treelet interactions.
Circles represent features (in order: Nominal, Verbal, Prepo-
sitional, Matrix-Clause, Agent, Patient) on attachment sites
(labeled in parentheses); phonological forms are unmarked;
and the dotted lines are attachment links. Note that even ill-
formed structures are included, e.g., tossed attaching to Root
as the matrix verb instead of the relative clause (RelC) head.

Oddly, there are relatively few SOSP results on timing data,
even though timing data are the most common kind of psy-
cholinguistic data, and even though self-organization is gen-
erally understood via dynamical systems theory, the mathe-
matics of variables interacting in time. Our main contribution
here is a novel SOSP framework that addresses this shortcom-
ing by making the relationship between well-formedness and
processing times transparent. Influenced by Cho et al. (2017),
Smolensky (1986), and Haken (1983), we define a harmony
function (also known as a potential or energy function) that
specifies the global well-formedness of system states (config-
urations of features on attachment sites and attachment links,
Fig. 1). We employ a systematic method of deriving the har-
mony function from lexical features in parsed sentences, cre-
ating a hilly landscape with peaks corresponding to both fully
grammatical structures and conflict states (Fig. 2). The sen-
tence processing dynamics noisily push the system uphill on
this landscape to find local harmony maxima. This leads to a
theory of timing effects in which, all other things being equal,
a higher-harmony parse is built faster than a lower-harmony
one. This is because higher peaks have steeper gradients,
causing the system to move faster toward the peak. In am-
biguous sentences, the system stochastically selects among
different peaks, and its path will be more curved if compet-
ing peaks are more equally well-formed. Therefore, average
processing times over many trials depend on which peaks are
selected and how curved the trajectories are.

Below, we present our SOSP framework (called SOSP-TH
(“treelet harmony”) to distinguish it from other SOSP mod-
els), show how it makes timing predictions, report an imple-

...[ at [N [Det the] player]]

...[ at ] [ Root [S [Subj [Det the] player] tossed]]

...[ at [N [Det the] player [RelCl tossed]]]

Figure 2: A partial harmony surface illustrating a sample pro-
cessing path. The vertical axis is harmony, and the other di-
mensions code feature/link configurations. After reading the
coach smiled at the player, the noisy dynamics push the sys-
tem toward a partial parse with the player attached as the
nominal dependent of at at the peak labeled [ at [N [Det
the] player] ]. After stabilizing there, tossed is read, jump-
ing the system (red arrow) to a point intermediate between
the grammatical [ at [N [Det the] player [RelCl tossed]]] and
the locally coherent, low-harmony [ at ] [ Root [S [Subj [Det
the] player] tossed]] (with at not attached to the subsequent
words). From there, the system settles again, in this case se-
lecting the grammatical peak.

mented SOSP-TH model of local coherence, and finally dis-
cuss SOSP-TH in relation to other psycholinguistic theories.

The SOSP-TH framework
In SOSP-TH, linguistic structures are built out of lexically
anchored syntactic treelets that connect with each other via
graded attachment links (Fig. 1). We assume for simplic-
ity a dependency grammar formalism (e.g., McDonald et al.,
2013), so the only attachment sites are ones linking a word
as the dependent of another word (head attachment sites) and
ones linking other words as dependents (dependent attach-
ment sites). The head and dependent attachment sites are
feature vectors encoding syntactic and semantic properties
of a word and its expected dependents, respectively. Some
features can change (e.g., the determiner the gets its number
marking from its licensor), while others are fixed in the lex-
icon. The only constraints on link formation are that 1) no
links can form within a single treelet (e.g., a determiner de-
pendent site on a noun cannot link to the head of that same
noun) and 2) links can only form between head attachment
sites and dependent attachment sites, i.e., no head-head or
dependent-dependent links.2. All other links, grammatical
and ungrammatical, are allowed to form. Finally, a special

2Links may to fail to form, making fragmentary, low-harmony
parses.



root node is available to anchor the whole sentence.
Features and links that are fully “on” and “off” are coded

as 1 and 0, respectively. In order to allow multiple tokens
of the same treelet in one sentence (e.g., the in the dog saw
the cat), all of a treelet’s dimensions are repeated for every
position in a sentence. Thus, there is a set of dimensions
corresponding to the as the first word of a sentence, a differ-
ent set of dimensions for the as the second word, etc. Links
(additional dimensions of the system) are between sentence-
position-specific instances of treelets.3

Not all attachment links make equally well-formed struc-
tures, though. Structures in which all linked feature vec-
tors are perfectly matched receive the maximum harmony of
1. Any feature mismatch lowers the harmony for that struc-
ture. In this way, SOSP implements a graded notion of well-
formedness. We quantify the local harmony hi of a (partial)
linguistic structure i, i.e., degree of well-formedness for i’s
configuration of features and links, using Eq. 1:

hi = ∏
l∈links

(
1− dist(fl,head , fl,dependent )

n f eat

)
(1)

The local harmony hi of a structure is the product of one
minus the normalized Hamming distances dist(·) between
the head feature vectors fl,head and dependent feature vectors
fl,dependent for each link l. n f eat is the number of elements
in the feature vectors. This definition of local harmony is
valid for any combination of features and links, even those
that strongly violate rules of a symbolic grammar, e.g., the
fragmentary, locally coherent structure [ at ] [ Root [S [Subj
[Det the] player ]] tossed]. In the simulations below, we will
see that including these lower-harmony structures in the men-
tal representation of possible structures plays a key role in
explaining observed timing effects.

Eq. 1 allows us to calculate the harmony of any linguistic
configuration, but on their own, the his do not tell us how to
choose a structure given the input. To that end, we define a
global harmony function and derive the dynamics from it.

Defining the harmony landscape and dynamics
We can define where the peaks in our harmony function are by
using a sum of radial basis functions (RBFs) φi (Han, Sayeh,
& Zhang, 1989; Muezzinoglu & Zurada, 2006):

φi(x) = exp
(
− (x−ci)

ᵀ(x−ci)
γ

)
Here, x (a column vector) is the d-dimensional state of the
system encoding values of all features and links in Rd , each
ci is the location of the ith (partial) parse (encoding desired
feature values and link strengths), ᵀ denotes the vector trans-
pose4, and γ (a free parameter) sets the width of the RBFs.

3This parallels the TRACE model of word perception
(McClelland & Elman, 1986), where every position of every word
is a node in the model. We agree with the critique that this is neu-
rally implausible and may miss important generalizations. However,
TRACE has been very successful at capturing phonological effects
in word processing, so we feel this is a reasonable place to start.

4(x− ci)
ᵀ(x− ci) is the squared Euclidean distance between x

and ci.

We then define the harmony function H(x) as the sum of n
RBFs, where n is the number of partial and full parses (har-
mony peaks) we wish to encode:

H(x) =
n

∑
i

hiφi(x) (2)

where the hi give the local harmony of a (partial) parse, com-
puted using Eq. 1. This equation creates a hilly harmony land-
scape analogous to Fig. 2, assigning harmony values both to
the ci and to all states intermediate between them.

In SOSP-TH, treelets are interacting subsystems that at-
tempt to assemble themselves through local interactions that
locally maximize harmony. Since the gradient of a scalar-
valued function like H(x) points in the direction of steepest
ascent, we make the system change in time so that it follows
this gradient uphill in a noisy way:

dx
dt

= ∇xH(x) =− 2
γ

n

∑
i

hi(x− ci)φi(x)+
√

2D dW (3)

(D scales the magnitude of the Gaussian noise process dW ).
For D = 0, gradient dynamical systems like this simply settle
from an initial condition to an attractor (points to which the
system will return after a small perturbation; Strogatz, 1994).
For D > 0, the noise helps determine which attractor the sys-
tem converges on.

Any parsed corpus can be represented as a set of vectors
(the ci) of lexical features at particular sentence positions and
links between attachment sites, making SOSP-TH a general
theory of sentence processing. Note that once the ci are spec-
ified, the harmony landscape does not change, unlike in the
Gradient Symbolic Computation framework (Cho & Smolen-
sky, 2016; Cho et al., 2017; Cho, Goldrick, Lewis, & Smolen-
sky, 2018), in which the harmony function changes with the
input. Since the parsing dynamics are derived directly from
the harmony function, the SOSP-TH parser is derived directly
from a parsed corpus of sentences. We now show how we can
derive processing time predictions from these equations.

Predicting processing times
To derive predictions about processing times, we first con-
sider the simplest possible case, a one-dimensional system
with a single harmony peak at x = 0. The harmony function
is H(x) = h φ(x) = h exp

(
− x2

γ

)
and the dynamics are given

by ẋ = − 2h
γ

x φ(x). From this equation, we can already see
that the higher the harmony of the attractor, the faster system
moves toward it: Well-formed structures are faster to build
than ill-formed structures.5

In general, though, an SOSP-TH parser will have many
dimensions coding multiple features and link strengths, and

5There are other ways to show how settling times in a single trial
depend on the harmony of the parse that forms. One is to consider
the time dt it takes to travel an infinitesimal distance dx, dt = dx/ẋ,
since time equals distance divided by velocity. Integrating both sides
shows the settling time t ∝ (2h)−1. A third option, linear stability
analysis (Strogatz, 1994) provides a similar result.



there will be many attractors corresponding to different struc-
tural alternatives. To see that higher harmony still means
faster processing, we can approximate Eq. 3 near an attrac-
tor i by neglecting all terms j 6= i in the sum in Eq. 3,
as the effect of all other attractors drops off exponentially:
ẋ ≈ −2hi

γ
(x− ci)φi(x). It is clear that the same relation be-

tween settling time and harmony holds. However, the effects
of other attractors are, in general, not completely negligible.
Fig. 3 shows how the presence of a relatively high-harmony
competitor can bow trajectories away from an attractor by
warping the harmony landscape, even though the system is
not in the basin of attraction of the competitor.

Thus, the overall theory of timing effects in SOSP-TH is
this: Within a basin of attraction of a structure, the settling
time scales approximately inversely proportional to the har-
mony of that parse, modulo the noise and the bowing. Over
repeated trials, noise will bump the system toward attractors
of different harmony heights, so the average settling time at
a word is the average of the settling times to each selected
attractor weighted by how often the attractor is selected. We
now illustrate this in a simple model of local coherence.

An SOSP-TH model of local coherence effects
A full model of the incremental processing of the sentences in
(1) would involve incrementally turning on features of words
in their sentence positions, letting the system settle to an at-
tractor associated with a partial parse, and repeating until the
sentence ends (see Fig. 1). We can model the main local co-
herence finding from Tabor et al. (2004) in a focused way by
assuming that the parser has already read up to The coach
smiled at the player tossed/thrown. . . and that it must now
choose how to attach player and tossed/thrown. We need only
two dimensions, one for the grammatical player-tossed link
and one for the locally coherent tossed-Root link. There is
thus an attractor at [1, 0] (local harmony h0 = 1.0) and one
at [0, 1], which will have different sub-maximal harmonies
(h1) depending on whether tossed or thrown has been read
(see Fig. 3). Player is a good feature match to be the subject
of tossed, and tossed can function as a main verb attaching
to the root node, so the attractor at [0, 1] is penalized only
for leaving the coach smiled at unattached to the rest of the
structure. For thrown, though, [0, 1] is additionally penalized
because thrown cannot function as a main verb, so its features
do not match Root’s main-verb dependent features. We start
the system at [0, 0], not biased toward either attractor.

SOSP-TH predicts that the noise should bump the system
toward the grammatical parse in most cases because its high
harmony dominates the harmony landscape. When the noise
does push the state toward the locally coherent attractor, it
will approach it more slowly in the thrown condition than
in the tossed condition because of thrown’s especially low
harmony. But because this happens so rarely, the average
time will be dominated by fast approaches to the grammat-
ical attractor. The locally coherent parse for tossed will be
selected more often due to its higher harmony, so it will in-
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Figure 3: Contour plots of the harmony landscapes used in the
local coherence simulations. Contour labels give the harmony
at that level. Red lines show noiseless trajectories starting at
[0, 0] and approaching the grammatical parse (Gr) at [1, 0].
Note the extra bowing toward the locally coherent attractor
(LC) for tossed, causing extra slowing compared to thrown.

crease the average settling time more than thrown. There
is also more trajectory bowing for tossed, which also slows
processing (Fig 3). Thus, a relatively high-harmony com-
petitor for the grammatical parse will, on average, cause a
competition-based slowdown.

We simulated both conditions 2000 times using Euler for-
ward discretization with a time step of 0.01, D = 0.001, and
γ = 0.25. The system ran until it got within a small radius of
an attractor. The local harmony h1 of the locally coherent at-
tractor ([0, 1]) was set to 0.8 in the tossed condition, and in the
thrown condition to 0.5. As predicted, the system settled to
the ungrammatical attractor in both cases, and it did so more
frequently in the tossed condition (about 14% of runs) than in
the thrown condition (<1% of runs). This increased the aver-
age settling time for tossed (M = 159.073 time steps, SD =
27.692) more than for thrown (M = 149.794,SD = 24.698),
modeling Tabor et al. (2004)’s effect.

These simulations show local coherence effects for one pa-
rameter setting, but Fig. 4 shows how the same pattern holds



over a wide range of parameter settings. Where it does not
hold, there is possibly empirical evidence for a phenomenon
that corresponds to the model, different from local coherence.
Fig. 4 shows mean settling times as a function of the harmony
h1 of the ungrammatical parse. We used γ = 0.25 here, but
the pattern holds for a wide range of γ values. This figure
shows that we will observe local coherence effects as long as
0 <= h1,thrown < h1,tossed < 0.85. This predicts that local co-
herence effects should be widespread, a result supported by a
large-scale eye-tracking corpus study (Bicknell et al., 2009).

For h1 greater than about 0.85, the pattern changes: As
the ungrammatical parse increases in harmony, the time its
settling time approaches that of the grammatical parse, so
it no longer pushes the overall average settling time up as
much and the average settling time starts to drop (Fig. 4, bot-
tom panel). The competition still causes a slowdown, but
not as strongly as for somewhat lower-harmony competitors.
Thus, the model predicts the strongest competition-induced
slowdowns when the competing structure is of moderate har-
mony and smaller-magnitude slowdowns for both very low
harmony competitors and (to a lesser extent) higher harmony
competitors. This is, to our knowledge, unique among mod-
els of sentence processing. We speculate that this property
of SOSP-TH might provide a new explanation for ambiguity
advantage effects (e.g. Traxler, Pickering, & Clifton, 1998),
where certain ambiguous relative clause and adjunct attach-
ments are read more quickly than comparable unambiguous
structures. If the harmonies of the two competing parses are
close to 1.0 in the ambiguous condition but one is appreciably
less than 1.0 in the unambiguous conditions, the competition-
based SOSP-TH might be able to explain this puzzling effect
that has been argued to rule out competition-based theories.

Discussion
In this paper, we presented a theory of timing effects in a self-
organizing sentence processing (SOSP) framework, demon-
strated how it can explain local coherence effects, and spec-
ulated on a possible new approach to ambiguity advantage
effects. In our SOSP-TH framework, the amount of time
it takes to build a structure depends on how well-formed
the structure is, and the average structure-building time over
many trials is the weighted average of settling times to each
parse chosen.6

The local coherence model highlights the crucial role that
lower-harmony structures play in SOSP-TH: A relatively
well-formed but ungrammatical competitor slows processing
more than a very ill-formed competitor because the higher-
harmony competitor is built more often. This account differs
from the grammar-supervised noisy channel approach to local
coherence (Levy et al., 2009), which explains some (but not
all; Kukona et al., 2014; Paape & Vasishth, 2015) local co-
herence effects by allowing the parser to edit its input to pre-

6This is similar to recent cue-based retrieval approaches (e.g.,
Lewis & Vasishth, 2005) that model reading times with statistical
hierarchical mixture models (e.g., Nicenboim & Vasishth, 2018).
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Figure 4: Top: Mean settling times for the local coherence
model as a function of the ungrammatical parse h1 (solid line,
left y-axis) and the proportion of runs in which the the gram-
matical parse was selected (dotted line, right y-axis). Bot-
tom: Mean settling time by selected parse (solid line, circles =
grammatical; dashed line, triangles = locally coherent parse).
For h1 < 0.4, the system never settled on the ungrammatical
attractor. Note the different y-axis ranges.

serve grammaticality. By comparison, ACT-R for sentence
processing (Lewis & Vasishth, 2005) might be thought of as
partially grammar-supervised: Ungrammatical structures can
affect processing via noisy memory retrieval that sometimes
retrieves incorrect structures, but the cues used for retrieval
are set by the grammar, preventing it from explaining local
coherence effects via incorrect retrieval. By allowing both
grammatical and ungrammatical structures to always influ-
ence processing, SOSP-TH occupies a unique and parsimo-
nious place among theories of sentence processing.
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