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Emergent Task Differentiation on Network Filters∗

Mehdi Saghafi† , Harry Dankowicz† , and Whitney Tabor‡

Abstract. This paper aims to analyze the emergence of task differentiation in a model complex system,
characterized by an absence of hierarchical control, yet able to exhibit coordinated behavior and
collective function. The analysis focuses on linear network filters, i.e., networks of coupled linear
oscillators with a differentiated steady-state response to exogenous harmonic excitation. It demon-
strates how an optimal allocation of excitation sensitivities across the network nodes in a condition
of resonance may be constructed either using global information about the network topology and
spectral properties or through the iterated dynamics of a nonlinear, nonsmooth learning paradigm
that only relies on local information within the network. Explicit conditions on the topology and
desired resonant mode shape are derived to guarantee local asymptotic stability of fixed points of the
learning dynamics. The analysis demonstrates the possibly semistable nature of the fixed point with
all zero excitation sensitivities, a condition of system collapse that can be reached from an open set of
initial conditions but that is unstable under the learning dynamics. Theoretical and numerical results
also show the existence of periodic responses, as well as of connecting dynamics between fixed points,
resulting in recurrent metastable behavior and noise-induced transitions along cycles of such connec-
tions. Structural additions to a core network that conserve desired spectral properties are proposed
as a defensive mechanism for fault tolerance and shielding of the core against targeted harm.
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1. Introduction. In a multiagent complex system, task differentiation (often referred to
as division of labor) affords a mechanism for achieving an optimal collective behavior that is
distinct from the behavior of the individual agents [7, 25, 29]. In the absence of hierarchical
control, or any a priori differentiation between agents, such task differentiation must be an
emergent property of the system dynamics, a result of indirect or direct interactions between
agents [30]. When task differentiation is associated with a collective function that enhances
the fitness of the system in the presence of environmental constraints, the system dynamics
should be sensitive to changes in these constraints [6, 46]. Indeed, the exact distribution of
tasks between agents must exhibit some degree of plasticity in order to maintain the desired
function of the overall system as environmental conditions change [36].

In societies of honey bees and other social insects, task differentiation ensures that an
intricate symphony of survival is played without the presence of a conductor [13, 15]. The queen
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bee provides neither leadership nor central coordination [40]. Worker bees mature through
a succession of in-hive roles, including the rearing of brood and general cleaning, ultimately
ascending into a fellowship of foragers, who explore the environment surrounding the hive
and gather nectar for its sustenance. Primed by age, the distribution of tasks in a colony
may vary also with the availability of food, the number of nonforaging bees, the birth rate of
brood, the survival rate of foragers, and other environmental conditions [11, 18, 45]. Since no
one bee is either aware of all of these factors or able to impose an assignment of tasks onto
the members of the colony, information about such secondary (for the process of maturation)
inputs may be transmitted across the colony, e.g., through the widespread release of low-
volatility pheromones or piggybacking on a network of social interactions [22].

Inspired by experimental evidence of social regulation of division of labor in insect societies
[27], this paper aims to explore a paradigm for task differentiation in a model complex system,
entirely through local interactions. Our development stands in some contrast to threshold-
based models of emergent division of labor in insect societies available in the literature (e.g.,
[3, 21, 34]) and makes no pretense as to any implications for social insects. Instead, in
an effort to explore a physically (and possibly biologically) important collective behavior, the
theoretical discussion considers a class of complex systems that we call (linear) network filters,
networks of coupled linear oscillators with a differentiated, open-loop, steady-state response
to exogenous harmonic excitation (cf. [16, 20, 31, 32, 43], but see also [24] for related analysis
of linear viscoelastic polymer networks). Here, the complex system is interpreted as an input-
output system and filtering is understood to represent a frequency-dependent amplification
or attenuation of an incoming exogenous signal, as seen in the system’s response.

The filters considered here are passive [9] in that all the energy that is present in the
system is supplied by the exogenous signal, rather than by endogenous processes, as would
be the case for an active filter. The frequency-dependent amplification that interests us is
the resonant response of lightly damped network filters to excitation near a system’s natural
frequencies. Such resonant behavior is characterized by a large amplitude response also in the
case of small excitation amplitudes, rendering the system particularly sensitive to excitation
at such a frequency. Localized excitation at resonance is also associated with long-range
propagation of the incoming energy through the network.

As shown in our analysis, the response of a network filter at resonance is scaled by a linear
combination of the sensitivity of individual nodes to excitation. Accordingly, we formalize
a notion of task differentiation in terms of the vector of excitation sensitivities and seek to
identify optimal assignments of the elements of this vector, as well as propose and analyze a
dynamic learning paradigm whereby such optimal assignments may be arrived at indirectly
through an iterated process. In particular, while optimal assignments may be identified using
information about the global network topology, we aim for a learning paradigm in which up-
dates to nodal excitation sensitivities depend only on properties of the corresponding network
neighborhoods [39]. The analysis of such a model process enables rigorous prediction of the
conditions that must hold, e.g., in order for the optimal assignment to be a (locally in state
space) asymptotically stable fixed point.

Interestingly, because of the nonsmooth dependence of the proposed learning updates on
the current vector of excitation sensitivities, we find that the fixed point for which the resonant
excitation is perfectly rejected by the filter may attract an open set of initial conditions, even
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as trajectories based at other initial conditions arbitrarily close to this fixed point deviate
from it by an O(1) amount after a single iterate. Such a semistable fixed point is a striking
feature of our piecewise smooth learning dynamics. In the presence of noise, this feature
allows for a geometric decay toward a dysfunctional state during an intermediate stage of the
learning dynamics, followed by convergence toward an asymptotically stable state only once
the distance to the dysfunctional state is of the same order of magnitude as the noise. We
show that such metastable behavior is also found between noise-induced transitions connecting
coexisting semistable fixed points. While simple to formulate, our learning dynamics thus
exhibit complicated transient and asymptotic dynamics that, in some cases, ultimately achieve
the desired assignment of excitation sensitivities, and in others predictably fail to do so.

Beyond the question of task differentiation, we rely on our network filter model to examine
mechanisms for building resilience into a complex system (cf. [1, 10], but see also [8, 17, 33]).
Here, we consider ways in which nodes may be added to an existing core network while
preserving a selected natural frequency as well as the restriction of the corresponding mode
shape to the core nodes. Such additional nodes increase the cross-section of the network
to targeted harm but reduce the relative cross-section of the core nodes. We analyze two
such mechanisms for network growth: through the addition of redundant nodes and neutral
nodes, respectively. In the former case, for example, we demonstrate how arbitrary networks
of redundant nodes may be appended to individual nodes of the core network and suggest a
way for these to enable localized detection and repair of the failure of a core node.

In contrast to much work on artificial neural networks, our models assume fixed connection
weights. They nevertheless afford a form of learning in which each node adjusts its degree
of participation in the dynamics, based only on locally available information, and successful
learning is defined as achieving an optimal response when the network is excited at reso-
nance. Our network models are inherently linear, finite-dimensional, and open-loop, so effects
of nonlinearity, time-delay, or feedback control on properties of system synchronization and
self-organization (e.g., [12, 23, 26, 28, 38]) are not considered here. Consequently, the dysfunc-
tional state corresponding to perfect attenuation of a resonant exogenous signal as a result
of vanishing excitation sensitivities is inherently distinct from the phenomenon of amplitude
death found in coupled networks of nonlinear oscillators (e.g., [19, 42]).

We organize the discussion below as follows. In section 2, we consider a sequence of network
designs, proceeding first from the analysis of an infinite one-dimensional lattice without a
boundary, through that of a periodic one-dimensional lattice, to the case of ultimate interest:
a general finite network. We allow the infinite and periodic lattice formalisms to inspire both
the technique of analysis and the response characteristics of interest in the finite networks for
which boundary effects may be significant. In section 3, we investigate the question of filter
design in terms of the structural modifications alluded to in the previous paragraph, as well
as the learning dynamics that form a core contribution of this work. A discussion in section
4, grounded in theoretical and numerical observations of the learning dynamics, looks toward
a general phenomenology and its implications for other kinds of networks. Several directions
for future research are considered in the concluding section 5.

2. Network filters. In this paper, we designate as (linear) network filters systems of cou-
pled linear oscillators that transform excitatory exogenous signals into an output response
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with a differentiated dependence on the excitation frequency. We consider both the transient
response to localized excitation, as well as the steady-state response to harmonic excitation
applied to network nodes according to their excitation sensitivity. We associate the charac-
teristics of the system response with spectral properties of the network, specifically its distri-
bution of natural frequencies and corresponding mode shapes. We find it useful to consider
first two special cases of network filters, for which closed-form analysis yields useful insights
that translate also to the nontrivial topologies that are of primary concern in this paper.

2.1. An infinite lattice. Let the nodes along an infinite, one-dimensional lattice represent
identical single-degree-of-freedom linear mechanical oscillators of unit mass, damping ratio ζ,
and natural frequency Ω (cf. [20]). Allow for additional linear coupling with unit stiffness (but
no damping) between neighboring nodes up to a distance p. Specifically, if the displacement
of the nth node at time t is denoted by un(t), then the infinite system of differential equations

(1) ün(t) + 2ζΩu̇n(t) + Ω2un(t) +
p∑
r=1

(2un(t)− un+r(t)− un−r(t)) = fn(t), −∞ < n <∞

describes the response of the lattice to the exogenous excitation {fn(t)}∞n=−∞.
The Fourier transform pair

(2) ûµ(t) =
∞∑

n=−∞
un(t)e−iµn ⇔ un(t) =

1
2π

∫ π

−π
ûµ(t)eiµn dµ

and similarly for fn(t) and f̂µ(t) imply that ûµ(t) = ûµ+2π(t) and f̂µ(t) = f̂µ+2π(t) for all µ.
Substitution in (1) then yields

(3) ¨̂uµ(t) + 2ζΩ ˙̂uµ(t) + Ω2
µûµ(t) = f̂µ(t),

in terms of the dispersion relation Ωµ =
√

Ω2 + 2p− 2
∑p

r=1 cosµr for which, consequently,
Ωµ = Ωµ+2π = Ω−µ. It follows that

(4) ûµ(t) =
(

2ζΩûµ(0) + ˙̂uµ(0)
)
ĥµ(t) + ûµ(0) ˙̂

hµ(t) +
(
f̂µ ∗ ĥµ

)
(t),

where

(5) ĥµ(t) = e−ζΩt
1

Ωζ
sin Ωζt, Ωζ =

√
Ω2
µ − ζ2Ω2,

and the convolution

(6)
(
f̂µ ∗ ĥµ

)
(t) =

∫ t

0
f̂µ(τ)ĥµ(t− τ) dτ.

In the special case of harmonic excitation, i.e., fn(t) = an cosωt ⇔ f̂µ(t) = âµ cosωt for
constant an and âµ, the convolution integral evaluates to

(7) âµ
(Ω2

µ − ω2)
(

cosωt− ˙̂
hµ(t)

)
+ 2ζΩω

(
sinωt− Ω2

µ

ω ĥµ(t)
)

(Ω2
µ − ω2)2 + 4ζ2Ω2ω2 .
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As t→∞, this converges to the steady-state oscillatory response

(8) ûµ,ss(t) = âµ
(Ω2

µ − ω2) cosωt+ 2ζΩω sinωt
(Ω2

µ − ω2)2 + 4ζ2Ω2ω2

with amplitude âµ/
√

(Ω2
µ−ω2)2+4ζ2Ω2ω2. Notably, for ζ < Ωµ/

√
2Ω, as a function of the excita-

tion frequency ω, the steady-state amplitude exhibits resonance for ω = ω∗µ =
√

Ω2
µ−2ζ2Ω2. For

ζ � 1, the amplitude at the resonance peak equals âµ(2ΩΩµζ)−1 +O(ζ) and the half-power
bandwidth of the peak equals 2Ωζ+O(ζ2), corresponding to a quality factor of Ωµ/2Ωζ+O(ζ2).
For ω to the left of the resonance peak, the steady-state amplitude decays to its DC value of
âµ/Ω2

µ. Finally, for ω � Ωµ, the steady-state amplitude is � âµ.
The spatial dependence of the steady-state response to harmonic excitation is now obtained

from the integral

(9) un,ss(t) =
1

2π

∫ π

−π
âµ

(Ω2
µ − ω2) cosωt+ 2ζΩω sinωt

(Ω2
µ − ω2)2 + 4ζ2Ω2ω2 eiµn dµ

or, provided that â−µ = âµ,

(10) un,ss(t) =
1
π

∫ π

0
âµ

(Ω2
µ − ω2) cosωt+ 2ζΩω sinωt

(Ω2
µ − ω2)2 + 4ζ2Ω2ω2 cosµn dµ.

For ζ � 1, O(ζ−1) contributions to this integral are concentrated around values of µ ∈ [0, π],
for which Ωµ lies within O(ζ2) of ω. Provided that âµ = O(1) for such values, it follows
that the resultant spatial shape is spread across a wide range of nodes. A more concentrated
spatial shape results (from destructive interference in the integral) for ζ = O(1) when ω ≈ Ωµ

for some µ or for all values of ζ when ω � Ωµ for all µ.
We illustrate these observations by considering the special case of an = δn0 ⇔ âµ = 1 for

all µ. For reference, in the left panel of Figure 1, we graph Ω2
µ against µ for p = 1, . . . , 5.

As shown in the right panel of Figure 1, a resonant response with a broad spatial shape is
obtained only for ω within some finite range. We find it informative to consider, in addition
to the steady-state response to harmonic excitation, the free response given initial conditions
induced by a finite-time, spatially bounded pulse of harmonic excitation. For small values of
ζ, we expect that significant propagation of energy away from the source will be suppressed
for excitation frequencies outside of a pass-band, corresponding again to the range of values
of Ωµ for µ ∈ [0, π]. In Figure 2, we contrast the displacement time histories for two different
values of ω, induced by a harmonic excitation pulse with an = δn0 and duration 10π/ω.

2.2. A periodic lattice. Consider next the imposition of spatial periodicity on the infinite
lattice discussed in subsection 2.1 (cf. [37]). Specifically, suppose that un(t) = un+N (t) and
fn(t) = fn+N (t) for all n. In this case, the Fourier transform pair

(11) ûm(t) =
N∑
n=1

un(t)e−2πimn/N ⇔ un(t) =
1
N

N∑
m=1

ûm(t)e2πimn/N
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Figure 1. (Left panel) Graphical representation of the dispersion relation for the infinite lattice for p =
1, . . . , 5 with Ω = 1. Here, Ω2

µ ≥ Ω2 for all µ ∈ [−π, π] and Ω2
µ = Ω2 when µ = 0, independently of p.

Moreover, at µ = π, Ω2
µ = Ω2 + 2 + 2p for odd p and Ω2

µ = Ω2 + 2p for even p. (Right panel) Steady-state
response amplitudes un,ss,amp, in the case of p = 1, Ω = 1, and ζ = 0.001, to harmonic excitation at n = 0 with
frequencies ω2 = 4, 5, and 6 (from top to bottom), normalized by the response at n = 0. A spatially bounded
response is obtained for ω2 = 6, well outside of the pass-band defined by the dispersion relation.
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Figure 2. Transient response, for p = 1, from 5 periods of harmonic excitation at n = 0 at a frequency
inside the pass-band (ω = 2, solid) and outside the pass-band (ω =

√
6, dashed). Here, ζ = 0.001, Ω = 1. The

resonant case shows more significant propagation of energy to nodes far away from the point of excitation.
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and similarly for fn(t) and f̂m(t) imply that ûm(t) = ûm+N (t) and f̂m(t) = f̂m+N (t) for all
m. Substitution in (1) and reference to the solution in (4) shows that

(12) ûm(t) =
(

2ζΩûm(0) + ˙̂um(0)
)
ĥm(t) + ûm(0) ˙̂

hm(t) +
(
f̂m ∗ ĥm

)
(t),

where

(13) ĥm(t) = e−ζΩt
1

Ωζ
sin Ωζt, Ωζ =

√
Ω2
m − ζ2Ω2,

in terms of the dispersion relation Ωm =
√

Ω2+2p−2
∑p
r=1 cos 2πmr

N
for m ∈ {1, . . . , N}.

Analogously to the treatment for the infinite lattice, in the limit of small damping,
the amplitude of the oscillatory steady-state response to harmonic excitation behaves as
O(ζ−1) only for values of ω near a corresponding natural frequency Ωm. The correspond-
ing spatial dependence includes a linear combination of the spatially distributed mode shapes
{cos(2πmn/N)}Nm=1 and {sin(2πmn/N)}Nm=1, as illustrated in the left panel of Figure 3. In
contrast, for ω away from any natural frequency and sufficiently large N , we anticipate a
spatially bounded steady-state response, as illustrated in the right panel Figure 3.

As with the infinite lattice, for small values of ζ, the free response induced by finite-time,
spatially bounded pulses of harmonic excitation is expected to propagate more significantly
across the network for frequencies near resonance. To illustrate this, Figure 4 shows the
displacement time histories for two different values of ω, induced by a harmonic excitation
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Figure 3. Spatially distributed steady-state shape at resonance (left panel) and spatially concentrated steady-
state shape outside of the resonant band (right panel) for a periodic lattice with N = 15 and p = 1. Here,
ζ = 0.001, Ω = 1, and ω ≈ 2.23 equals the largest natural frequency in the left panel and ω =

√
6 in the right

panel. In each case, excitation is introduced with unit magnitude at node 4 and the size of the nodes is scaled
by the largest response amplitude. The actual amplitudes differ by two orders of magnitude between the panels.
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Figure 4. Transient response from 5 periods of harmonic excitation at node 4 in the network shown in
Figure 3 at the largest resonance frequency (ω ≈ 2.23, solid) and with ω =

√
6 (dashed). Here, ζ = 0.001,

Ω = 1. The resonant case shows sustained larger amplitudes also at nodes far away from the point of excitation.

pulse with an = δn4 and duration 10π/ω. In contrast to the infinite lattice, whose natural
frequencies were given by a continuous spectrum Ωµ for µ ∈ [−π, π], the periodic lattice is
associated with a discrete spectrum Ωm for m ∈ {1, . . . , N}. It follows from the dispersion
relation that ΩN = Ω and Ωm = ΩN−m. For m = N , the corresponding mode shape is given
by the sequence {1, . . . , 1}, while for m 6= N ,

∑N
n=1 e

2πimn/N = 0, i.e., the sum of the positive
components of a mode shape is equal in magnitude to the sum of its negative components.

2.3. General networks. We carry forward the observations from the infinite and periodic
lattices to the case of an arbitrary finite uniform network of size N , wherein the neighborhoods
of individual nodes are defined by a constant adjacency matrix A, such that Ai,j = Aj,i = 1
if nodes i and j are coupled, and 0 otherwise. It follows that the equation of motion for the
vector u(t) of displacements of the network nodes equals

(14) ü(t) + 2ζΩu̇(t) +
(
L+ Ω2I

)
u(t) = f(t),

where the network Laplacian L is a symmetric, positive semidefinite matrix [4] for which
Li,j = −Ai,j for i 6= j and Li,i =

∑
j Ai,j , and the components of the excitation vector f(t)

describe the exogenous force applied to the individual network nodes. We refer to the matrix
sum L+ Ω2I as the global stiffness matrix.
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Let V denote a constant orthogonal matrix (cf. [44]) such that

(15) V TLV = diag{Ω2
1 − Ω2, . . . ,Ω2

N − Ω2}

for some sequence Ω ≤ ΩN ≤ · · · ≤ Ω1. By the definition of the Laplacian L, it follows that
its smallest eigenvalue equals 0 (i.e., that ΩN = Ω) and that the corresponding eigenspace
includes the vector ( 1 · · · 1 )T . Provided that this eigenspace is one-dimensional (i.e., that the
network is connected), it follows by orthogonality that if v is an eigenvector corresponding to
a nonzero eigenvalue, then

(16)
N∑
i=1

vi = 0,

i.e., the sum of all positive components of the eigenvector is equal in magnitude to the sum
of all its negative components. In particular, this holds true for all but one of the columns
of V .

The transform pairs û(t) = V Tu(t) ⇔ u(t) = V û(t) and f̂(t) = V T f(t) ⇔ f(t) = V f̂(t)
now imply that

(17) ¨̂un(t) + 2ζΩ ˙̂un(t) + Ω2
nûn(t) = f̂n(t), 1 ≤ n ≤ N.

The transient response to excitation and the steady-state response to harmonic excitation
are again given by (4) and (8) with the substitution µ 7→ n. As with the periodic lattice
(which corresponds to a diagonally banded, circulant adjacency matrix A [32]), in the limit
of small damping, the steady-state amplitude behaves as O(ζ−1) only for values of ω near a
corresponding natural frequency Ωm for some m ∈ {1, . . . , N}. If we assume a nondegenerate
spectrum (i.e., Ωm 6= Ωn for m 6= n), then the corresponding spatial dependence

(18) un,ss(t) =
Vn,m

2ΩΩmζ

N∑
k=1

Vk,mak sinωt+O(ζ)

is dominated by the spatially distributed mode shape given by the mth column of V , scaled
by the inner product between this column and the amplitude vector a = ( a1 · · · aN )T . In
contrast, for ω away from any resonance frequency and sufficiently large N , we anticipate a
spatially concentrated steady-state response.

The left panels of Figure 5 show example resonant steady-state shapes for two connected
networks with N = 15. The right panels show the spatially more concentrated response
obtained for excitation frequencies away from resonance. Inspired by the observations for
the infinite and periodic lattices, Figure 6 illustrates the propagation of energy through the
network following single-node, finite-time pulses of harmonic excitation with frequencies near
and away from resonance.

3. Network design. In the case of small damping, the networks discussed in section 2
are realizations of frequency filters that significantly amplify harmonic excitation signals with
frequencies near a natural frequency, provided that the amplitude vector is aligned with the
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Figure 5. Spatially distributed steady-state shapes at resonance (left panels) and spatially concentrated
steady-state shapes away from resonance (right panels). Here, ζ = 0.001, Ω = 1, and ω ≈ 2.59 (top) and
ω ≈ 2.93 (bottom) equal the second largest natural frequencies in the left panels and ω = 3 (top) and ω =

√
11

(bottom), respectively, in the right panels. In each case, excitation is introduced with unit magnitude at node 2
and the size of the nodes is scaled by the largest response amplitude. The actual amplitudes differ by two orders
of magnitude between the left and right panels.

corresponding mode shape. The relationship between the network structure and the resonance
spectrum is encapsulated in the Laplacian matrix L and the subject of extensive previous
research [4]. In the following, we make modest contributions to this theory by investigating the
possibility of adding nodes to an existing network, while retaining a given natural frequency.
We lay the foundation for an analysis of emergent task differentiation across the network by
considering a dynamic game that seeks to optimize the alignment of an a priori undetermined
amplitude vector and the corresponding mode shape, entirely through local interactions.

3.1. Network structure. We proceed to consider the addition of nodes to an existing
finite network with discrete spectrum {Ω1, . . . ,ΩN}. Specifically, we choose to require that
such an addition preserve a selected resonance frequency and make predictable modifications
to the corresponding mode shape. To this end, we allow for a differentiation between the
grounding stiffness of nodes in the original network (for which this uniformly equals Ω2) and
the grounding stiffnesses of new nodes added to the network.
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Figure 6. Transient response from 5 periods of harmonic excitation at node 2 in the network shown in the
upper panels of Figure 5 at the second resonance frequency (ω ≈ 2.59, solid) and with ω = 3 (dashed). Here,
ζ = 0.001, Ω = 1. The resonant case shows significantly larger amplitudes also at nodes far away from the
point of excitation.

Suppose, in particular, that a new node is connected to the kth node in the original
network, and that the corresponding grounding stiffness is assigned to equal Ω2

m for some m,
as shown in the left panel of Figure 7. The global stiffness matrix then takes the form

(19)
(
L+ diag{ek}+ Ω2 −ek

−eTk 1 + Ω2
m

)
,

where L denotes the original Laplacian and all components of the vector ek equal 0 except for
the kth which equals 1. If Lv = (Ω2

m − Ω2)v, then

(20)
(
v
vk

)
is an eigenvector of (19) with eigenvalue Ω2

m. It follows that the spectrum of the expanded
network retains the resonance frequency Ωm.

Now suppose that a new node is connected to the lth node of the already expanded network
and that the corresponding grounding stiffness again is assigned to equal Ω2

m, as shown in the
left panel of Figure 7. The global stiffness matrix then takes the form

(21)

(L+ diag{ek}+ Ω2 −ek
−eTk 1 + Ω2

m

)
+ diag{el} −el

−eTl 1 + Ω2
m

 .
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Figure 7. The addition of a single new node, pairs of new nodes, or rooted branches of new nodes (circles)
to a core network (disks), as shown in the left panel, preserves a selected resonance frequency Ωm and makes
predictable modifications to the corresponding mode shape provided that the grounding stiffnesses of the new
nodes equal Ω2

m. As suggested in the right panel, this observation generalizes to connecting a second network
(circles) with arbitrary topology and uniform grounding stiffness Ω2

m to an arbitrary node in the original network
(disks).

It follows by inspection that

(22)

 v
vk
vl


is an eigenvector of (21) with eigenvalue Ω2

m. By induction we may continue to grow the
network while retaining resonance for ω = Ωm, provided that all new nodes are connected
to at most one node of the original network. In this case, all added nodes lie on rooted
subtrees emanating from single nodes in the original network, and all nodes within the same
subtree correspond to identical values for the corresponding components of the mode shape,
as suggested in the left panel of Figure 7.

Suppose next that two new nodes in an already connected pair are connected to the kth
and lth node, respectively, of the original network. Assume that the corresponding grounding
stiffnesses are assigned the values

(23)
(Ω2

m − 1)vk + vl
vk

and

(24)
(Ω2

m − 1)vl + vk
vl

,

respectively, provided that these are both positive and finite. The global stiffness matrix then
takes the form



1698 MEHDI SAFGHAFI, HARRY DANKOWICZ, AND WHITNEY TABOR
L+ diag{ek}+ diag{el}+ Ω2 −ek −el

−eTk 2 +
(Ω2

m − 1)vk + vl
vk

−1

−eTl −1 2 +
(Ω2

m − 1)vl + vk
vl

 .(25)

It follows that

(26)

 v
vk
vl


is an eigenvector of (25) with eigenvalue Ω2

m.
In the special case that k = l, the above conclusions hold provided that the grounding

stiffnesses for the two added nodes both equal Ω2
m, as also illustrated in the left panel of

Figure 7. This observation implies that the nodes in the previously considered rooted subtrees
may be connected arbitrarily within the tree without any changes to the resonance frequency
or the corresponding mode shape. This is also immediately evident by the synchrony of their
displacement time histories in resonance. It follows that an original network may be extended
without affecting the resonance frequency Ωm by connecting a second network with arbitrary
topology and uniform grounding stiffness Ω2

m to an arbitrary node in the original network, as
represented schematically in the right panel of Figure 7.

We conclude by investigating the addition of neutral nodes, i.e., nodes corresponding to
a zero component of the mode shape associated with some resonance frequency. Specifically,
consider a resonance frequency Ωm of a network of nodes with identical grounding stiffnesses
Ω2 > 1 and let v denote the corresponding mode shape. Suppose that a new node is connected
to a subset Z of nodes in the original network, characterized by

∑
k∈Z vk = 0, and that the

grounding stiffnesses for these nodes are reduced by 1, as shown in the right panel of Figure 8.
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Figure 8. A neutral node (circle) may be added to a uniform core network (left panel) while preserving a
given resonance frequency by attaching the new node to every node in the original network and reducing the old
grounding stiffnesses by 1 (right panel). The same conclusion holds on a subset of nodes if the components of
the corresponding mode shape cancel on this subset.
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As observed previously, there exists at least one such subset, namely, {1, . . . , N}. The global
stiffness matrix now takes the form

(27)

(
L+ Ω2 −eZ
−eTZ |Z|+ Ω2

)
,

where all components of eZ equal 0 except those indexed by elements of Z, which equal 1.
It follows that

(28)
(
v
0

)
is an eigenvector of (27) with eigenvalue Ω2

m. No change to the grounding stiffness of nodes
with indices in Z is required if the corresponding component of v equals 0. If Z = {1, . . . , N},
then (28) is an eigenvector of the global stiffness matrix even without a change in grounding
stiffness, albeit for the eigenvalue Ω2

m + 1.

3.2. Response optimization. As suggested by (18), for ζ � 1, the resonant response to
harmonic excitation with frequency ω ≈ Ωm scales by the dot product of the corresponding
mode shape and the amplitude vector a. We choose to refer to each component of the am-
plitude vector as the excitation sensitivity of the corresponding node. If ak = 0, then the
steady-state response of the kth node is entirely due to coupling within the network, rather
than direct excitation. We refer to such a node as a receiving node. A node with nonzero
excitation sensitivity is a sending node that is directly excited and whose motion induces an
oscillatory response among its neighbors. It is clear that the excitation sensitivity of neutral
nodes has a negligible effect on the resonant steady-state response.

Restrict attention to the case where ak ∈ [0, 1] for k ∈ {1, . . . , N} and m > 1. Since
‖uss(t)‖ ∼ |

∑N
k=1 Vk,mak|, it follows from (16) that, for a network with identical grounding

stiffnesses, ‖uss(t)‖ may be maximized by either assigning ak = 1 if Vk,m > 0 and ak =
0 otherwise, or ak = 1 if Vk,m < 0 and ak = 0 otherwise. The addition of nodes with
differentiated grounding stiffnesses, as in subsection 3.1, breaks the symmetry encoded in
(16). In this case, an optimal alignment that maximizes ‖uss(t)‖ is given by one of the two
choices considered in the presence of symmetry.

The assignment of optimal excitation sensitivities for a given resonance frequency imposes
a form of task differentiation across the network by designating a subset S of sending nodes
with ak = 1 for k ∈ S and designating its complement {1, . . . , N} \ S as the set of receiving
nodes. As an example, Figure 9 shows resonant steady-state shapes and optimal selections of
the subset S for two uniform networks and example mode shapes.

As discussed in subsection 3.1, the overall steady-state response of a network to harmonic
excitation at Ωm may be augmented by appending a second arbitrary network with uniform
grounding stiffness Ω2

m to an arbitrary sending node in the original network and designating
all new nodes as sending nodes. Moreover, the optimal differentiation is unchanged by the
addition of neutral nodes per the recipe discussed in subsection 3.1.

Although the optimal assignation of nodes to S and its complement is straightforward at
the global network level, we are interested in exploring a learning algorithm, whereby values in
[0, 1] for the excitation sensitivities are arrived at dynamically, based only on local interactions
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Figure 9. Graphical representation of the mode shape corresponding to the largest natural frequency for
each of two uniform connected networks with 15 nodes and 21 (Ω2

1−Ω2 ≈ 6.64) and 27 edges (Ω2
1−Ω2 ≈ 8.30),

respectively. Here, circles (blue) and squares (red) denote positive and negative elements of the corresponding
eigenvector. The size of each vertex is affine in the magnitude of the corresponding element. Optimal selections
for the subset S discussed in the text are obtained either from the subset of blue circles or of red squares.

within the network. Specifically, we seek a discrete-time model for network learning of an
optimal design of a that maximizes the function a 7→ |vTa| for some vector v, assumed below
to equal an eigenvector of L. In particular, we explore a model wherein learning updates
applied to an depend only on the components of a and v for the nth node and its immediate
neighbors. When such a local learning approach is able to achieve globally optimal choices,
we speak of emergent coordination or emergent task differentiation. We are interested not
only in conditions that ensure such emergent coordination but also in conditions for which
circumstances conspire against global coordination.

Let P+, P0, and P− denote the subsets of {1, . . . , N} corresponding to positive, zero, and
negative components of v, respectively. Suppose, without loss of generality, that

∑
k∈P+

vk ≥
−∑k∈P− vk. The quantity |vTa| is then maximized by ak = 1 for k ∈ P+ and 0 otherwise. We
proceed to define simultaneous updates to the components of a corresponding to one iterate
of network learning. Specifically, for n ∈ P0, suppose that an 7→ 0. For n /∈ P0, let Fn be
a subset of {1, . . . , N} representing the corresponding network neighborhood (excluding the
nth node). Then, with gn =

∑
k∈Fn vkak and given a learning rate ρ ∈ [0, 1], let

(29) an 7→


ρ+ (1− ρ)an if gnvn > 0,

(1− ρ)an if gnvn < 0,
an if gn = 0.

Apart from the trivial reset an 7→ 0 for n ∈ P0, the model exhibits no learning when ρ = 0. In
the case that ρ = 1, a ∈ {0, 1}N after the first stage of learning (provided that gn 6= 0),
and jumps between 0 and 1 are instantaneous, rather than gradual as is the case when
0 < ρ < 1.
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3.3. Learning dynamics. A preliminary study of the possible learning dynamics is af-
forded by an analysis of its fixed points and their stability. Without loss of generality, remove
nodes with indices in P0 and assume that the remaining nodes form a connected network.
When this does not hold, each connected component is a special case of the analysis below.

For any network topology, three trivial fixed points are given by (i) the zero vector a∗ = 0,
(ii) the optimal solution with an = 1 for n ∈ P+ and 0 otherwise, since the latter implies
that gn ≥ 0 for all n, and (iii) the potentially suboptimal solution with an = 1 for n ∈ P−
and 0 otherwise, since the latter implies that gn ≤ 0 for all n. The existence of additional
nontrivial fixed points depends both on the network topology and the vector v. For example,
for every union U of connected components of P+ (or of P−), a fixed point is obtained by the
assignment an = 1 for n ∈ U and 0 otherwise.

Any fixed point with gn 6= 0 for all n must be an element of {0, 1}N , although the converse
does not hold. By construction, such a fixed point is always locally asymptotically stable.
Instability must therefore be associated with fixed points for which gk = 0 for some k. For
example, if ak /∈ {0, 1} and gk = 0 for some k, then any nonzero perturbation to gk will result
in a finite change to ak, independent of the perturbation to gk. Moreover, if k ∈ P+ (k ∈ P−),
ak = 0, gk = 0, and P+ ∩ Fk 6= ∅ (P− ∩ Fk 6= ∅), then any positive (negative) perturbation to
gk will result in the assignment ak 7→ ρ. Similarly, if k ∈ P+ (k ∈ P−), ak = 1, gk = 0, and
P− ∩Fk 6= ∅ (P+ ∩Fk 6= ∅), then any negative (positive) perturbation to gk will result in the
assignment ak 7→ 1− ρ. In each case, the corresponding fixed point is unstable.

Provided that P− is nonempty, the trivial fixed point at a∗ = 0 is always unstable, since
a perturbation with ak > 0 for some k with vk > 0 and vj < 0 for some j ∈ Fk results in the
assignment aj 7→ ρ. Nevertheless, it is straightforward to design examples for which a = 0
attracts an open set of initial conditions. Indeed, if the initial value of a ensures that gnvn < 0
for all n with an 6= 0, then this will remain true throughout learning and a will converge to
a∗ = 0 at the rate 1− ρ. Such an unstable fixed with an open inset is said to be semistable.

Consider, instead, the fixed point with an = 1 for n ∈ P+ and 0 otherwise. If gk = 0 for
some k, then this fixed point is unstable, since P−∩Fk 6= ∅. Similarly, if gk = 0 for some k for
the fixed point given by an = 1 for n ∈ P− and 0 otherwise, then this fixed point is unstable,
since P+ ∩Fk 6= ∅. It follows that asymptotic stability is obtained provided that P+ ∩Fn 6= ∅
for every n in the former case, and P− ∩ Fn 6= ∅ for every n in the latter case.

Now suppose that S is the largest subset of P+ such that S∩Fn 6= ∅ for every n ∈ S∪P−.
Then, provided that S is nonempty, the assignment an = 1 for n ∈ S and 0 otherwise is an
asymptotically stable fixed point. A similar conclusion again holds by substituting P− for P+
and vice versa. Any fixed point obtained by the assignment of an = 1 for n on some proper
subset of such a set S and 0 otherwise must be unstable.

If the set of sending nodes for some fixed point includes nodes in both P+ and P−, then
the fixed point is clearly suboptimal. Outside of the general conclusion regarding its stability
in the case that gn 6= 0 for all n, a case-by-case analysis must be applied.

Even with the existence of asymptotically stable fixed points, the learning dynamics may
exhibit more complicated recurrence, e.g., period-2 orbits, in which two distinct values of
the amplitude vector are visited in succession. The existence of such dynamics and their
stability depend not only on the network topology and the vector v, but also on the learning
rate ρ.
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Finally, we expand on the observation made for the stability of the trivial fixed point at
a∗ = 0 and note that instability may be accompanied by semistable dynamics with insets with
nonempty interiors. In this case, connecting dynamics between fixed points may be associated
with one semistable fixed point being a limit point of the inset of a second fixed point and,
quite possibly, vice versa. In the presence of noise, such connecting dynamics could result
in persistent noise-induced cyclic transitions among a collection of fixed points or a finite
sequence of distinct metastable dynamics followed by a final transition to an asymptotically
stable recurrent behavior.

3.4. Numerical results. We explore the observations from subsection 3.3 in the context
of a uniform network with N = 15 whose graph is shown in Figure 10. Here, each panel
is differentiated by a mode shape v corresponding to some natural frequency of the global
stiffness matrix. In all cases, P0 = ∅ and

∑
k∈P+

vk = −∑k∈P− vk.
In the top-left panel (largest natural frequency), the set S = {1, 2, 5, 9, 12, 13, 15} is the

largest subset of P− such that S ∩ Fn 6= ∅ for every n ∈ S ∪ P+. By the theoretical analysis
above, the assignment an = 1 for n ∈ S and 0 otherwise (for which vTa ≈ −0.83) should result
in an asymptotically stable fixed point. In contrast, there is no nonempty subset S of P+ such
that S ∩ Fn 6= ∅ for every n ∈ S ∪ P−. The two fixed points obtained by assigning an = 1 for
n ∈ {6, 11} (vTa ≈ 0.052) or n ∈ {8, 10, 14} (vTa ≈ 0.064), respectively, and 0 otherwise are
both semistable with open insets, as are the fixed point obtained by the combination of these
assignations (for which vTa ≈ 0.115) and the trivial fixed point at a∗ = 0. These claims are
verified by the numerical simulations shown in Figure 11, where all dynamics are attracted by
the asymptotically stable fixed point in the presence of noise, albeit allowing for metastable
dynamics on approach to one of the other fixed points prior to convergence.

A distinct behavior is obtained for the mode shape (fourth largest natural frequency)
represented by the bottom-right panel. Of the two fixed points obtained by assigning an = 1
for n ∈ {2, 6, 9, 12} (vTa ≈ −0.57) or n ∈ {3, 5, 7, 13, 15} (vTa ≈ 1.00) and 0 otherwise, we
anticipate that the first is unstable (but with an open inset) and the second is asymptotically
stable. These claims are verified by the numerical simulations shown in Figure 12, which
include recurrent, noise-induced connecting transitions between the former fixed point and
that obtained by also letting a7 = 1 (for which vTa ≈ −0.565). Interestingly, for ρ = 0.8,
simulations also reveal two period-2 attractors, in one case switching between

(30) a =
(

0 1/6 1 0 5/6 5/6 1 0 0 0 0 0 1 0 1
)T

with vTa ≈ 0.62 and

(31) a =
(

0 5/6 1 0 1/6 1/6 1 0 0 0 0 0 1 0 1
)T

with vTa ≈ 0.14 and in the other between

(32) a =
(

0 1 1/6 0 5/6 5/6 1 0 1 0 0 1 0 0 1/6
)T

with vTa ≈ 0.17 and

(33) a =
(

0 1 5/6 0 1/6 1/6 1 0 1 0 0 1 0 0 5./6
)T



EMERGENT TASK DIFFERENTIATION ON NETWORK FILTERS 1703

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

Figure 10. Graphical representation of a subset of the eigenvectors of the Laplacian of a uniform network
with 15 nodes and 29 edges corresponding to the four largest natural frequencies (top left: Ω2

1−Ω2 ≈ 10.12, top
right: Ω2

2 − Ω2 ≈ 8.37, bottom left: Ω2
3 − Ω2 ≈ 7.39, and bottom right: Ω2

4 − Ω2 ≈ 5.85). Here, circles (blue)
and squares (red) denote positive and negative elements of the corresponding eigenvector/mode shape.

with vTa ≈ −0.08. For both of these, gn 6= 0 for all n. We consequently expect persistence
of such a period-2 attractor over some range of values of the learning rate ρ. Indeed, for the
first period-2 attractor, the two points along the orbit are characterized by the form

(34) a =
(

0
1− ρ
2− ρ 1 0

1
2− ρ

1
2− ρ 1 0 0 0 0 0 1 0 1

)T
and

(35) a =
(

0
1

2− ρ 1 0
1− ρ
2− ρ

1− ρ
2− ρ 1 0 0 0 0 0 1 0 1

)T
,
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Figure 11. Iterated dynamics on the network in the top-left panel of Figure 10 with initial conditions
near each of the four semistable fixed points described in the text and ρ = 1. Here, uniform additive noise
on the interval [−0.02, 0.02] is introduced after the fourth iterate, while ensuring that the components of the
amplitude vector remain in [0, 1]. The existence of open insets is evidenced by metastable dynamics, with
transient anchoring of vT a at predicted values, prior to convergence to the asymptotically stable fixed point.
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Figure 12. Example iterated dynamics on the network in the bottom-right panel of Figure 10 with initial
conditions near the trivial fixed point a∗ = 0 (left panel) and near a cycle of connecting transitions (right
panel) for ρ = 0.8. In each case, uniform additive noise on the interval [−0.001, 0.001] is introduced after the
fourth iterate, while ensuring that the components of the amplitude vector remain in [0, 1]. The existence of
two attractive period-2 orbits verifies the theoretical prediction in the text.

and similarly for the other period-2 attractor. By evaluating gn across the network on each of
these points, we predict a border-collision bifurcation [41] associated with a zero-crossing of
gn for some n when ρ ≈ 0.7718 and ρ ≈ 0.8803. The attractor is thus expected to persist on
the interval between these values, an expectation that is borne out by numerical simulations.
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4. Discussion.

4.1. System collapse. From the analysis in section 3, we conclude that the optimal se-
lection of the subset of senders, for a given mode shape v and natural frequency Ωm, is locally
asymptotically stable under the proposed learning dynamics provided that the neighborhood
of every node includes nodes in P+. Even when this is the case, we cannot exclude the pos-
sibility of an inset of the semistable fixed point at a∗ = 0 with an open interior. Trajectories
based at initial conditions within this inset experience convergence toward a state in which
the network entirely fails to resonate with the exogenous excitation, in spite of its spectral
structure. Such a failure to differentiate tasks across the network may be characterized as a
collapse of the system, even though a∗ = 0 is not a sink for all nearby trajectories. Indeed,
small amounts of noise are enough to perturb an incoming trajectory, once sufficiently close
to a∗ = 0, so as to leave the inset and, potentially, converge toward an asymptotically stable
fixed point. Although the dynamics remain near such an asymptotically stable fixed point
even in the presence of small amounts of noise, sufficiently large perturbations may again
place a trajectory in the inset of a∗ = 0, leading to near-collapse. Since the inset is expected
to contain an open interior, there is nothing special about such perturbations, and collapse
may be predicted with some finite likelihood as a function of the distribution of the noise
process.

While the inset of an unstable fixed point in a smooth dynamic system is expected to be of
measure zero, this is not the case for the piecewise-defined dynamics of the learning algorithm.
For example, the fixed point at a∗ = 0 lives on the boundary of the system discontinuity, where
gn = 0 for one or several nodes. In such a case, attraction and departure may each be restricted
to one side of the discontinuity, allowing for an inset of finite measure. In this system, collapse
is not a function of a change to a system parameter, as in classical bifurcation analysis, but
simply the result of sufficiently large perturbations in initial conditions. We conjecture that
a similar phenomenology may explain failures of task differentiation in naturally occurring
multi-agent systems, e.g., social insect societies [2, 35].

4.2. Network robustness. As shown in subsection 3.1, it is possible to grow an existing
network in a systematic way, while ensuring sustained resonance at a given natural frequency
and with a mode shape whose restriction to the original network is preserved. We may envision
such growth as a defensive mechanism that builds redundancy into the network and shields its
core from harm by increasing the relative cross-section of inconsequential nodes. For example,
to the extent that we can attach neutral nodes to the original core (accompanied by required
reductions to the grounding stiffnesses), these reduce the relative exposure of core nodes to
targeted harm. They do so without affecting the optimal assignment of nodes as senders or
receivers and without affecting the behavior of the proposed learning algorithm.

The attachment of a single new node (or a uniform network of new nodes)—with grounding
stiffness equal to the square of a natural frequency—to a single node in the original core
provides a mechanism for redundancy. A failure of the core node may be detected by the
attached network and any of the new nodes may substitute for the original core node (provided
that its grounding stiffness is appropriately adjusted). If the optimal selection of the subset of
senders is asymptotically stable under the learning paradigm, then this remains the case also
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when such redundancy is introduced to nodes in P+. Stability is lost, however, if redundancy
is (also) added to nodes in P−. Moreover, because of the orthogonality of the matrix V (even
in the case of a nonuniform network), the addition of a sufficient number of redundant nodes
may result in a reduction in the optimal value of ‖uss(t)‖ relative to the value obtained for
the original core. We may overcome the loss of stability simply by excluding the redundant
nodes from the learning algorithm, requiring that their excitation sensitivity be identical to
that of the associated core node. The possible reduction in the optimal value of ‖uss(t)‖ may
be avoided by placing limits on the number of nodes in each added network.

5. Conclusions. We studied task differentiation in the excitation sensitivity across the
nodes of a network filter, a system of coupled linear oscillators. We showed that optimal
assignments of excitation sensitivities correspond to the designation of subsets of nodes as
senders, directly excited by the exogenous signals, with their complement constituting a col-
lection of receivers whose steady-state behavior is only indirectly a function of the excitation.
We analyzed the dynamics of an iterated learning paradigm that seeks to arrive at an op-
timal assignment of excitation sensitivities only through local information and documented
nontrivial behavior in an intuitive, but nonsmooth formulation for the learning updates.

Outside of the periodic one-dimensional lattice with only nearest-neighbor coupling, the
network filters considered here are not intended as models of an actual mechanical system, as
interference between coupling springs makes a physical realization challenging at best. Instead,
the objective is to consider a relevant phenomenology, viz., frequency filtering, coupled to a
paradigm for emergent task differentiation as an example of how local interactions may be
responsible both for the collective function of the system, as well as for the adaptation of the
system to environmental constraints.

In the introduction, we indicated inspiration from the study of social insects, notably
honey bee colonies, in which social interactions have been shown to contribute to the self-
organization of tasks. We have no evidence to suggest that honey bee colonies act as linear
frequency filters. Notably, their interactions constitute a time-dependent network, for which
any notion of topology is restricted to some suitable time aggregate. (For network analysis
of time-dependent trophallaxis interactions in honey bee colonies, see [14].) Moreover, task
differentiation in such insect societies may be alternatively triggered by spatially localized
needs, rather than by a collective global behavior.

In spite of the tenuous connection to naturally occurring networks, we believe that the
network filter context affords an opportunity to understand effects of temporal sequencing
(cf. [5]) and of the possible presence of endogenous signal sources within the system, as would
be the case in an active filter. While the above analysis takes the network topology as given,
it also informs the inverse question of topology optimization that seeks to identify a network
structure for which the learning paradigm achieves robust and optimal task differentiation.
We leave these questions for future study.
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EMERGENT TASK DIFFERENTIATION ON NETWORK FILTERS 1707

REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabási, Error and attack tolerance of complex networks, Nature,
406 (2000), pp. 378–382, https://doi.org/10.1038/35019019.

[2] A. B. Barron, Death of the bee hive: Understanding the failure of an insect society, Current Opinion
Insect Sci., 10 (2015), pp. 45–50, https://doi.org/10.1016/j.cois.2015.04.004.

[3] S. N. Beshers and J. H. Fewell, Models of division of labor in social insects, Ann. Rev. Entomology,
46 (2001), pp. 413–440, https://doi.org/10.1146/annurev.ento.46.1.413.

[4] S. K. Butler, Eigenvalues and Structures of Graphs, Ph.D. thesis, University of California, San Diego,
2008.

[5] D. Charbonneau, B. Blonder, and A. Dornhaus, Social insects: A model system for network dynam-
ics, in Temporal Networks, P. Holme and J. Saramäki, eds., Springer, New York, 2013, pp. 217–244,
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