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Abstract It has been claimed that connectionist (artificial neural network)
models of language processing, which do not appear to employ “rules”, are
doing something different in kind from classical symbol processing models,
which treat “rules” as atoms (e.g., McClelland & Patterson, 2002) . This
claim is hard to assess in the absence of careful, formal comparisons between
the two approaches. This paper formally investigates the symbol-processing
properties of simple dynamical systems called affine dynamical automata,
which are close relatives of several recurrent connectionist models of language
processing (e.g., Elman, 1990). In line with related work (Moore, 1998; Siegel-
mann, 1999), the analysis shows that affine dynamical automata exhibit a
range of symbol processing behaviors, some of which can be mirrored by
various Turing machine devices, and others of which cannot be. On the as-
sumption that the Turing machine framework is a good way to formalize
the “computation” part of our understanding of classical symbol processing,
this finding supports the view that there is a fundamental “incompatibility”
between connectionist and classical models (see Fodor & Pylyshyn, 1988;
Smolensky, 1988; beim Graben, 2004b). Given the empirical successes of con-
nectionist models, the more general, super-Turing framework is a preferable
vantage point from which to consider cognitive phenomena. This vantage
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may give us insight into ill-formed as well as well-formed language behavior
and shed light on important structural properties of learning processes.
Keywords: connectionism, artificial neural networks, Chomsky Hierarchy,
Turing Computation, Super-Turing computation, dynamical automata, dy-
namical recognizers, grammar

1 Introduction

In the 1980s and 1990s, Jerry Fodor and Zenon Pylyshyn, on the one hand,
and Paul Smolensky, on the other, had a debate about the relationship be-
tween symbolic and connectionist (artificial neural network) approaches to
cognition. Part of the discussion centered on a notion of “compatibility”.
Fodor & Pylyshyn (1988, 1995) argued that the symbolic approach is right
about the nature of cognition, and thus that, if connectionism is incompatible
with the symbolic approach, it must be rejected. In fact, they argued that
there is only one sense in which the connectionist approach might be com-
patible with the symbolic approach and that is as an ”implementation” (see
[43]): it might, for example, describe how the primitive symbols of symbol
systems are instantiated in physical brains. Crucially, on this implementation
view, there is a clean division between the “lower” implementation level and
the “higher” symbolic level of description such that all the causal relations
at the symbolic level can be described without reference to properties at
the implementation level. This claim has important implications for cogni-
tive science: it suggests that cognitive scientists concerned with “high level”
phenomena (presumably language, memory, conceptual structure, etc.) need
to pay no attention to connectionism or any other implementation mecha-
nism in order to successfully construct a theory of the phenomena. Fodor &
Pylyshyn’s description of what goes on in symbolic cognition is also in line
with the view that the computational processes of high level cognition fall
within the domain of “effective computation” as identified by the Church-
Turing thesis: high level cognitive computation can be fully formulated within
the framework of so-called “Turing Computation”.

Smolensky (1988, 1995a, 1995b) took a contrary position, arguing for “in-
compatibility” between connectionism and the symbolic approach. He distin-
guished between “implementation” and “refinement”, arguing that there is
a way of doing connectionist modeling of cognition in which the models are
not implementations but refinements of the symbolic models. He argued that
the sense of implementation that Fodor & Pylyshyn must mean (in order to
push the point about the irrelevance of connectionism to high level cognition)
is the sense used in computer science, where a low-level description (e.g., an
assembly language description like MIPS or SPARC) is an implementation
of a high-level description (e.g., BASIC or JAVA). In this case, the high-level
description and the low-level description contain the same algorithmic in-
formation: a programmer employing the high level language will perceive no
difference in functionality whether the high level language is implemented, for
example, in MIPS or SPARC. A low-level refinement, by contrast, contains
additional algorithmic information that is lacking in a high-level description.
He says, “Far from the conclusion that ‘nothing can be gained by going to
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the lower-level account’, there is plenty to be gained: completeness, precision,
and algorithmic accounts of processing, none of which is generally available
at the high level.” (Smolensky, 1995, p. 168)

This claim of novelty and relevance for connectionist models would be
vindicated if it could be shown that connectionist models do something sys-
tematically different from symbolic models and that empirical evidence fa-
vors the connectionist approach. In fact, connectionist networks have had
unusual empirical success in several domains where classical approaches have
not made much headway. Among these are the learning of syntactic structure
from word sequence data [5,6,34,33], the modeling of quasi-regular behavior
in phonology and morphology [17,26,39,38], and the derivation of overreg-
ularization as a consequence of the learning process in language acquisition
[7,27,36]. In each of these cases, the models exhibit surprising, empirically
justified behaviors and this makes them interesting to the field of cognition.
However, without formal insight into the relation of the connectionist models
to symbolic models, it is not clear what fundamental conclusions these results
imply for the field. It might be that the connectionist models are simply an
alternative form of symbolic model, perhaps one in which the symbols refer
to more fine-grained features of mental computation than those in classical
cognitivist theories. It is noteworthy that some researchers participating in
the debate put a large amount of weight on subtle verbal contrasts which are
not obviously clarifying: e.g. the contrast between whether the language sys-
tem “uses mechanisms that are combinatorial and sensitive to grammatical
structure and categories” [25] or whether rules are “approximate descriptions
of patterns of language use; no actual rules operate in the processing of lan-
guage” [22]. In this paper, in order to make headway on the issue, I adopt
a particular, formal approach, examining a simple type of dynamical system
that is closely related to the Elman network [5]. I make the assumption that
classical symbolic computation can be appropriately understood as compu-
tation by some type of Turing device (a review of Turing devices is provided
below). I then argue, following [24] and [40], that the dynamical models in-
clude this kind of computation as one possibility but also include additional,
super-Turing behaviors. I further argue that understanding these additional
behaviors and their relationship to classical behaviors may be helpful for
making new headway in the cognitive sciences.

In a recent development of the connectionist/symbolist debate, beim
Graben [2] suggests that we take advantage of insights from dynamical sys-
tems theory, especially the method of symbolic dynamics [4], to clarify the
discussion. In particular, it is helpful to note that the state space of a connec-
tionist model is generally a real vector space so there is a continuum of possi-
ble states. Focusing on discrete update (iterated map) dynamics, the method
of symbolic dynamics adopts a finite partition of such a state space and treats
the partition indices as symbols. Thus, the iterating dynamical system on the
vector space is associated with an iterating dynamical system on the symbol
space. This correspondence gives rise to two ways of describing the system,
which beim Graben & Atmanspracher (2006) [13] refer to as the “ontic” (vec-
tor space) and “epistemic” (symbolic alphabet) levels. Beim Graben (2004b)
suggests that the ontic/epistemic distinction provides a good model for the
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subsymbolic/symbolic (low/high) distinction discussed in cognitive science.
He goes on to suggest that the dynamical notion of topological equivalence
(or topological conjugacy) can help formalize the concept of compatibility be-
tween descriptions. Two dynamical systems, f : X → X and g : Y → Y are
topologically conjugate if there is a homeomorphism h : X → Y satisfying
g ◦ h = h ◦ f . A homeomorphism is a continuous, one-to-one function. Topo-
logical conjugacy is a kind of structural correspondence: the states of two
conjugate systems are in complete, point-to-point correspondence, and the
patterns of transitions between states also correspond perfectly across the
systems. A particularly strong kind of topological conjugacy occurs when
the partition is a generating partition. A partition is generating if the future
of the boundaries of the partition subdivides the space arbitrarily finely. In
this case, almost all the information about the details of the continuous dy-
namics can be reconstructed from the information about how the symbols are
sequenced. For many dynamical systems, however, there is no generating par-
tition and it is not possible to choose a single partition for which the symbolic
dynamics reveals (almost) all the detail about the subsymbolic (continuous)
dynamics. Such cases, beim Graben (2004b) maintains [2], should count as
cases of incompatibility between symbolic and subsymbolic dynamics. The
fact that they exist among connectionist networks reveals, against Fodor &
Pylyshyn’s position, a fundamental incompatibility between the symbolic and
connectionist approaches.

In this paper, I side with Smolensky and beim Graben in arguing for
incompatibility between connectionist and symbolic systems. I also endorse
beim Graben’s emphasis on the value of a dynamical systems perspective.
However, I’ll suggest that beim Graben’s formalization of the notion of in-
compatibility is not the most useful one, and if we adopt a formulation more
suitable to the central questions facing cognitive science, then the incompat-
ibility is deeper than has been demonstrated in the aforementioned papers.
Likewise, the lack of completeness and precision that Smolensky mentions
is certainly valid, but it does not seem to argue for a strong change in our
approach to cognitive science. After all, the high-level algorithms that run
on digital computers do not completely and precisely describe the physical
actions of the computer chips; yet this lack does not, in any significant sense
except for the remote possibility of hardware errors, require that we pay at-
tention to chip physics when describing the information processing behavior
of digital computers. Beim Graben (2004b)’s examples of dynamical systems
with incompatible epistemic and ontic dynamics are generally cases in which
one partition induces symbolic dynamics corresponding to some familiar or
simple algorithm (e.g., parsing a sentence, categorizing objects based on fea-
tures, or a simple finite-state process). None of the examples have generating
partitions (at least under the parameterizations considered), so none exhibit
strong informational equivalence across the levels. I will argue, however, that
such cases should not interest us very much. They are all situations in which
a vector space dynamical system can be used to generate a familiar algorith-
mic process via symbolic dynamics and there is nothing unexpected in the
behavior at the symbolic level. In particular, Fodor & Pylyshyn’s claim of
separability seems to hold: if our interest is in the higher level description
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(i.e. the symbolic dynamics), then we don’t need the vector space description
to characterize these dynamics.

Smolensky (1995a) [43] also states that “algorithmic accounts of process-
ing” are not available at the higher level for the connectionist systems he has
in mind (p. 168). This is news if it means that no algorithm at all will suffice
to describe the high-level behaviors of some of the systems. However, Smolen-
sky does not provide evidence that such cases exist. A main purpose of this
paper is to show, in keeping with [40], that such cases do exist, and to suggest
that they have implications for the type of phenomena we expect to observe in
high level cognition. In making this point, I’ll note that beim Graben’s focus
on the difference between systems with generating partitions and those which
lack them is very helpful. However, I’ll argue that it is actually the cases with
generating partitions that exhibit the kind of incompatibility we should be
interested in. I reach this conclusion by a simple argument: the case of great-
est interest is the case in which a connectionist model does something that
a classical symbol system cannot do; under certain conditions, connectionist
models with real-valued weights compute non-Turing computable functions
[40,52]. In fact, they can only do this when there is a generating partition.
Assuming that Turing computation is a good formalization of classical sym-
bolic computation, I argue that “incompatibility” of classical and symbolic
computation should be associated with the availability, not the lack, of a
generating partition.

1.1 Overview

The essence of the present work is an analysis of the computational properties
of affine dynamical automata. Section 2 reviews basic distinctions between
types of formal languages. Section 3 defines affine dynamical automata and
their associated formal languages. Section 4 presents several theorems which
support a structural classification of all parameter settings of an interesting
subset of affine dynamical automata. Section 5 presents a parameter space
map based on this classification. I suggest that such maps offer a useful new
perspective on cognitive processes like development and learning. Section
6, the Conclusion, considers the implications of these findings for cognitive
science, returning to the question about the compatibility or incompatibility
of the connectionist and symbolic views.

Affine dynamical automata are a type of dynamical system with feed-
back. The present work is thus closely related to other work that asks how
complex computation can be accomplished by feedback dynamical systems.
Many efforts in this regard have been directed at defending the claim that
recurrent connectionist models, a type of feedback dynamical system, can
handle the recursive computations that appear to underlie natural language
syntax [6,28,42,48]. Recently several projects have adopted some of these
dynamical recursion mechanisms to model neural data on real time language
processing [12,14–16] (Gerth & beim Graben, this issue [11]). In all of these
projects, the focus is on getting the dynamical system to exhibit a complex
behavior that the classical paradigm already handles. The current work takes
a more general perspective, noting that that feedback dynamical systems can
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handle complex recursive computations and also handle processes that are
not computable by Turing machines. The focus is on clarifying the relation-
ships between these different behaviors within the general framework of super
Turing computation and on highlighting the possible usefulness of the more
general perspective to the field of cognition.

2 Relevant formal language classes

This section describes the classes of formal languages that are important in
the discussion below.

A formal language is standardly defined as a set of finite-length strings
drawn from a finite alphabet [18]. Here, I extend the definition to include
one-sided infinite length strings over a finite alphabet. Many of the same
classificational principles apply to this more general case. The Chomsky hi-
erarchy [3] classifies finite-sentence formal languages on the basis of the type
of computing mechanism required to generate (or recognize) all and only
the strings of the language. For example, the language L1, consisting of the
strings {ab, abab, ababab, . . .}, can be generated/recognized by a computing
device with a finite number of distinct states. Such a device is called a “Fi-
nite State Automaton” (FSA) and its language is called a “Finite State
Language” . A more powerful type of device, the “Pushdown Automaton”
(PDA) consists of a finite state automaton combined with an unbounded
stack (first-in, last-out) memory. The top (last-in) symbol of the stack and
the current state of the FSA jointly generate/predict the next symbol at
each point in time. Each PDA language can be generated by a “Context
Free Grammar” (CFG) and vice versa, so PDAs and Context Free Gram-
mars are equivalent formalisms. A CFG is a finite list of constituency rules
of the form, A → A1A2 . . . An where n is a finite positive integer (possibly
different for each rule in the list). The language L2 = {ab, aabb, aaabbb, . . .}
(also called “anbn”), consisting of the strings with a positive whole number
of “a”’s followed by the same number of “b”s, can be processed by a PDA
(or CFG), but not by a FSA. Arguments have several times been advanced
on linguistic grounds that human language processing employs something
similar in computational capability to a Context Free Grammar (or PDA)
[10], though the current consensus is that a slightly more powerful device
called a Tree Adjoining Grammar [21] provides the best characterization of
the formal patterning of the syntax of natural languages [37]. An even more
powerful device than those so far mentioned is the “Turing Machine” (TM).
A TM consists of a FSA that controls an infinite tape memory (unbounded
number of slots, the FSA controller can move step-by-step along the tape,
either backwards or forwards, reading symbols and then either leaving them
untouched or overwriting them as it goes). Chomsky (1956) [3] noted that
the devices on this hierarchy define successively more inclusive sets of for-
mal languages: every FSA language can be generated by a PDA; every PDA
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language can be generated by a TM; but the reverse implications do not
hold.1

Consider the set of all one-sided infinite strings formed by right-concatenation
of strings drawn (with replacement) from a countable source set. If the source
set is the language of a Chomsky Hierarchy device, we say that the device
generates/recognizes the set of one-sided infinite strings. If, on the other
hand, a set of one-sided infinite strings has no such source set, then we say
that that set of one-sided infinite strings is not Turing machine computable.

Although they are not conventionally treated as a level on the Chomsky
Hierarchy, there is a proper subset of the set of FSA languages that will be
of relevance later in the present discussion: the Finite Languages. These can
be specified with a finite list of finite-length strings. There are also sets of
strings that are not generated by any Turing Machine, the most powerful
device on the Chomsky Hierarchy. These string-sets are sometimes called
“super-Turing” languages [40]. These will also be relevant in the discussion
below.

3 Formal Paradigm: Affine Dynamical Automata

Pollack (1991) defined dynamical recognizers: suppose fi : X → X for
i = 1, . . . ,K are functions on the continuous space, X. Given a string of
integers, σ, drawn from the set {1, . . . , K}, we start the recognizer in a spec-
ified initial state in X and apply the functions corresponding to the integers
of σ in order. If, at the end of applying the functions, the system is in a
specified subset of the space (sometimes called the “accepting region”), then
the string σ is said to be accepted by the dynamical recognizer. The set of
strings accepted by the recognizer is a formal language. Moore (1998) [24]
explores conditions under which dynamical recognizers produce languages in
various computational classes related to the Chomsky Hierarchy. One notable
result is that, by choosing functions and regions judiciously, one can make
dynamical recognizers for all Chomsky Hierarchy classes as well as for all
super-Turing languages [24].

Here, I focus on a class of devices called “affine dynamical automata”.
These are a subclass of the “dynamical automata” defined in [48] which have
similar computational properties to dynamical recognizers. Unlike dynamical
recognizers, which can execute any function at any time, the functions of
dynamical automata have restricted domains, so they are useful for modeling
organisms (like language producers) whose history restricts the set of possible
(or probable) behaviors at each point in time. A few preliminary definitions
support the main definitions.

(1) Def. An affine function f : d ⊂ R → R is a function of the form
f(h) = ah + b, where a and b are real numbers. If b = 0, then f is linear.

1 Chomsky (1956) [3] also identified the set of Linear Bounded Automata which
define a class of languages (“Context Sensitive Languages”) that have the PDA lan-
guages as a proper subset, and are themselves a proper subset of the TM languages.
Context Sensitive Languages are not of central concern in the present study.
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If b 6= 0, then f is strictly affine.

(2) Def. The length of a string σ is denoted |σ| and is equal to the number
of characters in σ if σ has a finite number of characters and is called
“infinite” if σ does not have a finite number of characters.

(3) Def. If an infinite string has an initial character, it is called a right sided
infinite string. If it has a final character, it is called a left-sided infinite
string.

We will not be concerned here with the difference between left-sided and
right-sided infinite strings, so, for convenience, we assume that all infinite
strings are right-sided infinite (they have an initial character but no final
character).

(4) Def. The length n initial substring of a string σ of length ≥ n is denoted
σ[n] and consists of the first n characters of σ in order.

(5) Def. A finite string σ is a proper initial substring of a string σ′ either
finite or one-sided infinite, if σ′[|σ|] = σ and |σ′| > |σ|.

(6) Def. An affine dynamical automaton is a device

Mh0 = (H, F,h0) (1)

where H = {h ∈ RN : 0 ≤ hj ≤ 1, j ∈ {1, . . . , N}}, F = {f1, f2, . . . , fK}
is a set of affine functions that map H into itself, and h0 ∈ H is the initial
state. The domain, di, of each function, fi, is {h ∈ [0, 1] : f i(h) ∈ [0, 1]
where f i has the same functional form as fi but unrestricted domain}.
For a string, σ, of integers drawn from Σ = {1, . . . , K}, the system starts
at h0 and, if possible, invokes the functions corresponding to the integers
of σ in order. A string is said to be traceable under Mh0 if every function
corresponding to its integers can be invoked, in order, from left to right,
starting from h0. A string is maximal under Mh0 if it is traceable and it is
not an initial substring of any longer, traceable string. The set of maximal
strings under Mh0 is the language of Mh0 and is denoted L(Mh0). Mh0 is
said to generate and recognize its language and each string of its language.

For Mh0 an affine dynamical automaton, I will use the notation M to refer
to the set of affine dynamical automata Mh0 with h0 ∈ [0, 1].

Affine dynamical automata are closely related to connectionist networks
with sigmoidal activation functions. For example, Simple Recurrent Networks
[5,6] can approximately process infinite-state formal languages by using the
contraction and expansion of the so-called “linear” (or central) section of the
sigmoid to traverse fractal sets [30,32,31,54]. Closely related devices called
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“Fractal Grammars” employ affine dynamical automata as their core compu-
tational mechanism and exactly process infinite state languages in a manner
similar to that of Simple Recurrent Networks [48,49]. In particular, the affine
maps of affine dynamical automata play an analogous role to the linear sec-
tions of the sigmoids. Thus, the study of affine dynamical automata may
be informative about how connectionist networks can process complex lan-
guages.

Affine dynamical automata can generate both finite and infinite length
strings:

(7) Def. Let M = (H, F,h0) be an affine dynamical automaton. Let σ be
a maximal string of Mh0 . If the length of σ is finite, then σ is a finite
sentence of Mh0 . If the length of σ is not finite, then σ is an infinite
sentence of Mh0 .

(8) Def. An affine dynamical automaton is proper if H =
⋃K

i=1 di, i.e., if at
least one of the automaton’s functions can be applied at every point in
H.

In a proper affine dynamical automaton all the sentences have infinite
length. Although standard formal language theory focuses on finite sentence
languages, the theory extends naturally to infinite sentence languages. I focus
on proper affine dynamical automata here.

Even two function affine dynamical automata generate a rich variety of
formal languages. The next section supports this claim by providing examples
of affine dynamical automata that generate finite languages, finite state (non
finite) languages, context free (non finite state) languages, and super-Turing
languages. In fact each of these cases exists among both linear and and strictly
affine dynamical automata.

4 Range of phenomena within the class

4.1 Finite Languages

A cobweb diagram illustrating one trajectory of the affine system

f1(h) = h + 1
8

f2(h) = h + 3
8

h0 = 1/6
(2)

is shown in Figure 1. This trajectory corresponds to the sentence, “1 2 1 1”.
Only sentences satisfying

1
6

+
3n

8
+

m

8
<

7
8

(3)

where m ≥ 0 is the number of 1’s and n ≥ 0 is the number of 2s can be
generated under this system. Since there are only a finite number of such
cases, this automaton generates a finite language.
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0 1
0

1

h

f(
h

)

1

2

h0

Fig. 1 A sample trajectory of f1(h) = h + 1/8, f2(h) = h + 3/8, h0 = 1/6. The
state space is the interval [0, 1]. The line segment labeled “i”, for i ∈ {1, 2}, is a
plot of fi(h). The zig-zag line indicates the sample trajectory.

The linear system

f1(h) = 4h
3

f2(h) = 2h
h0 = 1

4

(4)

generates the finite language {“111”, “12”, “211”, “22”}.
Every linear system with a1 > 1 and a2 > 1 and h0 > 0 generates a finite

language.

4.2 Finite State Languages

If the initial state in the previous example is replaced with h0 = 0, then the
system generates a finite-state language that is not a finite language. Figure
2 depicts a FSA that generates/recognizes this language. I call this FSA BA
for “Bernoulli Automaton” because one can think of it as a nonprobabilistic
version of the Bernoulli Process. The circle corresponds to the single state
of the machine. The system always starts in the state labelled “S”. It moves
between states by following arcs. The label on each arc indicates the symbol
that is generated when the system traverses the arc. The Bernoulli Automa-
ton generates all infinite sentences on the two-symbol alphabet Σ = {1, 2}.
In fact, every linear system with h0 = 0 generates L(BA) and every linear
system with a1 ≤ 1 and a2 ≤ 1 generates L(BA) for all initial states.
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S

1

2

Fig. 2 The Bernoulli Automaton.

Figure 3a shows trajectories of the affine system

f1(h) = 2h
f2(h) = − 1

2h + 7
6

h0 = 1
5

(5)

This system is generated by the non-deterministic finite-state machine shown
in Figure 3b.

4.3 Context Free Languages

Context free languages (i.e., languages generated/recognized by PDAs or
CFGs) arise when contraction and expansion are precisely matched [48]. In
particular, the following theorem states conditions under which linear dy-
namical automata generate context free languages:

Thm. 1 Let DA = ([0, 1], {f1(h) = a1h, f2(h) = a2h}, h0 > 0) be a
linear dynamical automaton. If

a1 = a
−α

β

2 (6)

where α and β are positive integers and a1 and a2 are not both 1, then
L(DA) is a context free language that is not a finite state language.

Appendix A1 provides a proof.
Figure 4 illustrates a trajectory and provides a context free grammar

for a linear dynamical automaton that generates context free languages. A
corresponding affine case is:

f1(h) = 2h− 1
3

f2(h) = 1
2h + 1

6

h0 = 1
(7)
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a. Trajectories.

0 1
0

1

h

f(
h

)

1

2

h0

b. Finite state diagram.

S

1 1

1

2

Fig. 3 Trajectories (a) and finite state diagram (b) for the system, f1(h) =
2h, f2(h) = −1/2h + 7/6, h0 = 1/5.

4.4 Super-Turing Processes

Super Turing behavior occurs in the linear regime when the system has both
expansion and contraction, but the two are not related by a rational power.
To show this, some background is needed.

(9) Def. Let Mh0 = (H,F,h0) be a dynamical automaton with fi(h) =
aih+ bi. If ai 6= 0 for i ∈ {1, . . . , |F |}, then let F−1 = {f−1

i (h) = h−bi

ai
for
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a. Trajectories.

0 1
0

1

h

f(
h

)

1

2

h0

b. Context Free Grammar.

S → 1 S 2 S
S → ε

Fig. 4 Trajectories (a) and context free grammar (b) for the system, f1(h) = 2h,
f2(h) = 1

2
h, h0 = 3

4
.

i ∈ {1, . . . , |F |}}. Then Mh0 is said to be invertible with inverse M−1
h0

=
(H,F−1,h0).

Consider the set of linear dynamical automata, DA = (H = [0, 1], {f1(h) =
a1h, f2(h) = a2h}, h0 ∈ H) with a1 > 1 and 0 < a2 < 1. Note that d1, the
domain of f1 is [0, 1/a1]. Thus, b = 1/a1 is the boundary between the subset
of H on which f1 can apply and the subset of H on which it cannot. b is
called an internal partition boundary of the state space. Consider DA−1, the
inverse of DA:

DA−1 = ([0, 1], {f1 =
h

a1
, f2 =

h

a2
}, Σ = [1, 2], h0 ∈ [0, 1]) (8)

DA−1 computes the inverse of the history of DA for each h.

(10) Def. The future of a state, h ∈ H, is the set {x ∈ H : x = Φσ(h) for
some σ ∈ Σ∗}.

That is, the future of a state h is the set of all states that the system can
visit when started at h, including h itself.
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Lemma Let DA be a set of invertible affine dynamical automata with
inverses DA−1. Consider an internal partition boundary, b of DA. If
some subset of DA−1

b is dense in an uncountable set in H, then for
uncountably many initial states h0, DAh0 generates a super Turing
language.

A proof of the Lemma is provided in Appendix A2. The Lemma provides a
way of showing that some linear dynamical automata exhibit super Turing
behavior.

Thm. 2 Let DA = (H = [0, 1], {f1(h) = a1h, f2(h) = a2h}) be a
linear dynamical automaton. If

a1 = a−γ
2 (9)

where γ is a positive irrational number, then there are states h ∈ H
for which L(DAh) is not generable/recognizable by any Turing device.

Theorem 2 is proved in Appendix A2.
Figure 5 shows a linear dynamical automaton that generates super-Turing

languages. The illustration shows a single trajectory starting from the initial
state, h0 = 3

4 . I do not know if this particular initial state generates a super-
Turing language. But, by Thm. 2, there is bound to be a state very close to
this initial state that generates a super-Turing language. Thus, the figure is
illustrating an approximation of a super-Turing case. Even this approxima-
tion appears to be less regular than the trajectories in the finite, finite-state,
and context-free examples discussed above.

It is a little easier to show the existence of super Turing behaviors in the
affine case. The chaotic Baker Map [4] is equivalent to the affine dynamical
automaton,

f1(h) = 2h
f2(h) = 2h− 1 (10)

The inverse of the Baker Map (BM−1) is

f1(h) = 1
2h

f2(h) = 1
2h + 1

2

(11)

The Baker Map has one internal partition boundary at h = 1/2. The union
of the zero’th through the n’th iterates of 1/2 under BM−1 consists of the
points {k/2n} for k = 1 . . . 2n−1. Therefore any point in H can be arbitrarily
well approximated by a finite iterate of BM−1 and the future of 1/2 is dense
in H. Thus, by the Lemma, there are uncountably many initial states h, for
which L(BMh) is not generable by a Turing Machine. A similar argument
applies to the Tent Map [4].
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5 Parameter Space Map

The results of the preceding section justify the construction of the parame-
ter space map shown in Figure 6. The slope of the first function is encoded
along the horizontal dimension and the slope of the second is encoded along
the vertical.2 The map indicates the type of language associated with most
initial states under the parameter setting. The blocks with shaded bands
contain settings that generate context-free languages and settings that gen-
erate super-Turing languages. Within the blocks, when the exponent, γ, is
rational, then all initial states except h0 = 0 are associated with context
free languages that are not finite state languages. The greyscale indicates,
for rational values of γ, the number of symbols required to write a grammar
of the language, with lighter shading corresponding to languages requiring
fewer symbols. The super-Turing languages occur when γ is irrational, but
only for a proper subset (uncountably infinite) of the initial states.

6 Conclusion

The paper has provided evidence that a rich variety of computational struc-
tures occur in even very simple dynamical computing devices. All two-function
linear dynamical automata were considered, supporting the presentation of
a parameter space map for this subclass.

2 Maps with one or both slopes negative generate only finite or finite state lan-
guages and are not shown.
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Fig. 6 Deployment of language types in the parameter space of two-function linear
dynamical automata.

I return now to the issues raised in the introductory argument about the
compatibility of connectionist and classical symbolic computation, arguing
that the present, super-Turing perspective offers some valuable new tools for
approaching challenging problems in the study of cognition.

6.1 Relation between Affine Dynamical Automata and Connectionist
Models

In the Introduction, I suggested that the rich repertoire of these affine devices
extends to other connectionist devices, including those that have been shown
to exhibit appealing empirical properties, like induction of syntactic struc-
ture, sensitivity to quasi-regularity in morphology, and transient overgener-
alization. The plausibility of this claim is suggested by related work which
shows that a gradient-based learning model with affine recurrent processors
at its core exhibits learning behaviors similar to that of other connection-
ist models [49]. Nevertheless, there is a need for further formal development
to clarify this relationship. One important goal is to extend the approach
to higher-dimensional networks. Another is to consider nonlinear/nonaffine
functions. I leave these as goals for future work.
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6.2 Turing machine computation as a formalization of “computation” in the
classical sense

The argument of the Introduction was also based on the assumption that
the Turing machine framework is a good formalization of the “computa-
tion part” of the symbolic paradigm of cognitive science. This assumption
is worth reviewing here in order to lay some groundwork for assessing the
merits of the super-Turing framework. Fodor & Pylyshyn (1988) argue that
the core computational feature of symbolic theories is “combinatorial symbol
combination”. This property is plausibly a foundational element in four em-
pirically defensible properties that Fodor and Pylyshyn cite as evidence for
the symbolic approach: productivity (unbounded combination ability), sys-
tematicity (understanding “John loves Mary” implies understanding “Mary
loves John”), compositionality (the parts–e.g. words—make essentially the
same contribution to the meaning of the whole in all contexts), and infer-
ential coherence (there is an isomorphism between human logic and actual
logic).

Something like a context free grammar seems to have the right proper-
ties to support a model of at least most of these phenomena. If a context
free grammar has recursive rules, it exhibits unbounded combination ability
(productivity); if it is combined with a Montagovian semantics [23], in which
syntactic combination rules are parallel to semantic combination rules, and
the categorical equivalence of “John” and “Mary” as syntactic elements can
be justified, then the context freeness implies the interchangeability of their
roles (systematicity). Likewise, the context freeness implies a context inde-
pendent interpretation of all constituents (compositionality). Although the
grammatical nature of actual logic is an open question, the evidence that
Fodor & Pylyshyn bring to bear in favor of inferential coherence is based
on the compositional structure of certain particular logical relationships: it
would be bizarre, they say, to have a logic in which P ∧ Q ∧ R → P but
P ∧ Q 6→ P . Again, a context free grammar is suitable for generating the
well-formed formulas of the non-bizarre logical subsystem alluded to here.
All of this suggests that some kind of Turing mechanism, perhaps a context
free grammar or something akin to it, is a good mechanism for specifying the
computations of thought, as conceived under the symbolic paradigm.

6.3 Benefits of the Super-Turing Perspective

What benefit, then, does the super-Turing framework offer cognitive science?
I suggested at the beginning, that the empirical credentials of connectionist
networks are strong enough that pursuit of a formal understanding of their
computational properties is warranted. Now that the formal analysis is in
view, a few other observations can be made in support of the usefulness of
the super-Turing perspective.

(i) Gradual metamorphosis is a hallmark property of grammar change
[19] and grammar development in children [20,45]. I have argued elsewhere
that, under the classical paradigm, there is no satisfactory way to model
the phenomenon of gradual grammar change [46,47]. The essential problem
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is that grammatical structures seem to come and go from languages via
gradual accretion/loss of similar structures. But the classical paradigm offers
no systematic way of measuring similarity relationships among grammars.
The super-Turing framework offers a natural insight into this problem by
revealing real-valued metric relations among grammars in neurally motivated
computing mechanisms.

(ii) One may note that to distinguish between Turing and super-Turing
mechanisms among the linear dynamical automata, one must refer to infinite-
precision encodings of the parameter values. Since the real world is noisy,
infinite precision is not realistic, so perhaps there is no need to consider
the super-Turing devices (considering only Turing devices will get us “close
enough” to everything we need to know). This argument is reminiscent of
the argument that there is no need to consider infinite state computation
in the study of language because one can only ever observe finite-length
sentences. This argument can be countered by noting that consideration of
infinite state computing devices allows us to discover principles of linguistic
and logical organization like compositionality which would be out of reach
if only finite state computation or finite computation were employed. This
provides at least a cautionary note: we should not reject formal frameworks
out of hand just because they refer to ideal systems.

However, there is also a reason that we may, from a practical standpoint,
want to include super-Turing computation in the purview of cognitive sci-
ence. There appear to be regions of the affine parameter space where the
systems exhibit a behavior akin to robust chaos. In particular, when both a1

and a2 are greater than 1, the system vigorously explores the structure in the
initial state, producing exponentially diverging trajectories for an uncount-
able number of initial states. This results in traditional chaos (e.g., Devaney,
1989) [4] in the deterministic Baker Map and Tent Map mentioned above. A
natural extension of the traditional chaos to nondeterministic affine dynami-
cal automata [50] suggests that the nondeterministic cases may have similar
properties. There appear to be regions of positive measure in the parame-
ter space of two function affine dynamical automata where this generalized
chaos is pervasive; in this sense the chaos is robust. We know from studies
in other sciences that chaos is a practically relevant phenomenon that can
be detected empirically [1]. Therefore, these chaotic regions of the parameter
space may be relevant in a measurable way to the science of mind—perhaps,
for example, they will offer a way of modeling ill-formed behavior, an area
about which classical cognitive theory, with its emphasis on well-formedness,
has relatively little to say [51]. Now, the question is: What is the relationship
between chaos and super-Turing behaviors? Although the two are not coex-
tensive, it is at least clear that super-Turing behaviors are pervasive in regions
where there is chaos. Moreover, the mathematics of chaos requires infinite
precision. Therefore it seems wise to adopt the more general computational
framework.

(iii) The super-Turing framework suggests a way of understanding neu-
ral learning from a new perspective. In addition to considering generic local
properties of a cost function as is done in the derivation of low-level learn-
ing procedures [35] or the stability structure of the cost-function dynamics
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[53], we may consider the computational landscape that the learning process
traverses via parameter-space maps like Figure 6. This approach may shed
light on the structural stages of the learning processes and the relationship
between the emergentist perspective of many connectionist modelers and the
structural perspective of linguistic theory.

6.4 Return to “Compatibility”

Returning to the compatibility issue raised in the Introduction, the current
line of argument suggests that dynamical models with real parameters, like
recurrent connectionist networks, are, indeed, incompatible with classical
symbolic approaches in that their behaviors form a strict superset of the
behaviors exhibited by Turing devices.3 On the other hand, it is noteworthy
that the Turing devices among linear dynamical automata are dense in the
parameter space (see Figure 6), so, in this subregion of the affine domain,
the behavior of any super-Turing computation can well approximated by a
Turing mechanism. Perhaps this is why it has seemed sufficient, from the
standpoint of classical (structuralist) approaches to cognition, to use Turing
computation models: they can approximate observed structures quite well.
But the present work suggests that we ought to adopt a super Turing frame-
work for the same reason that one does well to consider the real continuum
when formalizing an understanding of concepts like differentiation and inte-
gration: the theory of processes is much simplified by working in complete
metric spaces—viz. spaces which don’t have any points “missing”.

Finally, it is also interesting to note that the non-finite state behaviors
of the linear dynamical automata come about through a complementarity
between the two parameters: they arise when one is expansive and the other
is contractive. Furthermore, if we take the complexity of a positive rational
number, γ, to be the sum of its numerator and denominator when it is ex-
pressed in lowest terms, then, for a linear dynamical automaton satisfying
a1 = a−γ

2 , the complexity of γ gives essentially the number of rules required
to write a context free grammar of the automaton. One can thus say that
the simplest exponent corresponds to the simplest context free grammar.
Whereas the Turing computation framework does not give us any partic-
ular insight into why context free computation, among all Turing machine
types, seems to be a kind of backbone of cognitive computation, the neu-
rally grounded super-Turing framework considered here suggests an insight:
it stems from a fundamental symmetry (multiplicative inversion) of real num-
bers.

In sum, the super-Turing framework is appealing because it is more gen-
eral than the Turing machine framework and it allows us to consider relation-
ships between devices that have been invisible in prior work on the structure
of cognitive computation.

3 While the case at hand only shows partial overlap between the two classes
of mechanisms, the results of [24] suggest that sufficiently large parameterizable
connectionist devices include all Turing computation as a proper subset.
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7 Appendix A1

Thm. 1 Let DA = ([0, 1], {f1(h) = a1h, f2(h) = a2h}, h0 > 0) be a linear
dynamical automaton. If

a1 = a
−α

β

2 (12)

for α, β positive integers and a1, a2 6= 1. Then L(DA) is a context free lan-
guage that is not a finite state language.
Proof: Without loss of generality, we can assume a1 > 1 and a2 < 1. Choose
two real numbers, m and n satisfying

mβ + nα = 1 (13)

For example, we could take m = 0 and n = 1
α . Let

u = an
1am

2 (14)

Therefore
a1 = amβ−nα

1

= a−nα
1 amβ

1

= a−nα
1 (a−β

1 )−m

= (an
1am

2 )−α

= u−α

(15)

Similarly
a2 = uβ (16)

Note that u = a
−1/α
1 where α is a positive integer and a1 > 1, so u < 1.

Let PDA be a pushdown automaton with a one-symbol stack alphabet.
Whenever PDA reads a 2, it pushes β symbols onto its stack. Whenever
PDA reads a 1, it pops α symbols off its stack. For x ∈ [0, 1], let

q(x) = dlogu(x)e (17)

where dye denotes the least integer greater than or equal to y. At the start
of processing, the stack of PDA has q(h0) symbols on it. For σ ∈ Σ∞, if
PDA makes a possible move at every symbol of σ in sequence (i.e., it never
encounters a 1 with fewer than α symbols on its stack), then PDA is said to
recognize σ. Let L(PDA) be the set of strings recognized by PDA.

Let σ ∈ Σ∞ be a sentence of L(DA). Consider σ[n] the length n prefix
of σ for n ∈ N . Suppose that, upon processing the prefix σ[n], PDA has j
symbols on its stack and M is at a point x ∈ [0, 1] where q(x) = j. Then,
if the next symbol is a 2, PDA will add β symbols to its stack. Similarly,
the new state of M will be x′2 = f2(x) = a2x = uβx. Therefore, q(x′2) =
dloguuβxe = β + dlogu(x)e = j + β. Likewise, if the next symbol is a 1,
then PDA will remove α symbols from its stack. Similarly, the new state
of M will be x′1 = f1(x) = a1x = u−αx. Therefore, q(x′1) = dloguu−αxe =
−α + dlogu(x)e = j − α. Therefore, since q(h0) was the number of symbols
on the stack at the start of processing, q(x) equals the number of symbols
on the stack at every step, provided that every legal move of M is a legal



Relationship between Symbolic and Non-Symbolic 21

move of PDA and vice versa. In other words, it only remains to be shown
that PDA and DA always generate/accept the same next symbol.

When the stack has α or more symbols on it, both 1 and 2 are possible
next inputs. But when the stack has fewer than α symbols on it, only 2 is
a possible next input. Likewise, if q(x) ≥ α then the state of M is in the
domains of both f1 and f2, but when q(x) < α then

dlogu(x)e < α
logu(x) < α

x > uα
(18)

since u < 1 and α > 0. Thus

x−1 < u−α

x−1 < a1

x > a−1
1

(19)

Since a−1
1 is the upper bound of the domain of f1, only f2 can be applied.

Thus L(M) = L(PDA). By a well-known theorem [18], L(PDA) is a context
free language. Since PDA can have an unbounded number of symbols on its
stack during the processing of legal strings from its language, L(PDA) is not
a finite state language. Thus L(M) is a context free language that is not a
finite state language. ¦

8 Appendix A2

Lemma Let DA be a set of invertible affine dynamical automata with in-
verses DA−1. Consider an internal partition boundary, b of DA. If some
subset of DA−1

b is dense in an uncountable set in H, then for uncountably
many initial states h0, DAh0 generates a super Turing language.
Proof: Consider the future, Fb, of the internal partition boundary, b = 1/a1

under DA−1. Suppose that some part of this future is dense in an uncount-
able set. There must be an uncountable number of points that are pairwise
separated from one another by points in Fb. Consider any pair of such points,
x and y and the separating point, B ∈ Fb. Consider iterating DA, the for-
ward map, simultaneously from the initial points x, y, and B. Since B lies
strictly between x and y and the functions of DA are linear, if the same sym-
bol is chosen for each of the three trajectories at every step, then each iterate
of the future of B will always lie strictly between each iterate of x and y.
Therefore, foor some σ, Φσ(B) = b. Thus the futures of x and y eventually lie
on opposite sides of the internal partition boundary. Therefore the futures
of x and y are nonidentical. Consequently L(DAx) 6= L(DAy). Since this
is true of uncountably many pairs of points, there must be an uncountable
number of distinct languages generated by DA. Since the Turing processes
are countable, uncountably many of these languages must be Super Turing
languages. ¦
Thm. 2 Let DA = (H = [0, 1], {f1(h) = a1h, f2(h) = a2h}) be a linear
dynamical automaton. If
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a1 = a−γ
2 (20)

where γ is a positive irrational number, then there are states h ∈ H for which
L(DAh) is not generable/recognizable by any Turing device.
Proof: Without loss of generality, assume a1 > 1. By the Lemma, it will
suffice to show that the future, F , of the point, 1/a1, under DA−1 is dense in
an interval of positive length. In fact, F is dense in H itself. Let α1 = 1/a1

and α2 = 1/a2. Note that α1 = α−γ
2 . Consider y = αj

1α
k
2(1/a1), for j and k

nonnegative integers and k ≤ γ(j + 1), a point in the future of 1/a1 under
DA−1. I will show that for every x ∈ H and every ε, there exists y satisfying
the conditions just mentioned, with |y − x| < ε. Note that

logα2y = logα2α
j
1α

k
2(1/a1)

= logα2(α
−γ
2 )jαk

2α1

= (logα2α1)− γj + k
(21)

f(z) = z − γ (mod 1) is an irrational rotation on [0, 1]. Therefore the set
{z−γj (mod 1) : j = 0, 1, 2, . . .} is dense in [0, 1]. Thus there is a nonnegative
integer j such that logα2α1 − γj (mod 1) is within ε of logα2x (mod 1).
It follows that there is a nonnegative integer k (k ≤ γ(j + 1)) such that
(logα2α1)− γj + k is within ε of logα2x. Since logα2 is expansive on (0, 1), it
also follows that y = αj

1α
k
2(1/a1) is within ε of x. Thus F is dense in [0, 1]. ¦

The foundation for this work was accomplished in collaboration with
Dalia Terhesiu. Helpful feedback was provided by the audience of the work-
shop on Dynamical Systems in Language held at the University of Reading,
England, September 8-9, 2008, by the audience of a talk given at the Univer-
sity of Connecticut Logic Group on April 23, 2009, and by two anonymous
reviewers.
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