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1.1 The Dynamics of Sentence Processing

The syntactic constraints of a language strongly determine the interpretation that a

reader or listener arrives at for a sentence. Thus, the human language comprehension

system must develop and evaluate hypotheses as to how to map the linguistic input into

appropriate syntactic units. Temporary ambiguity is the central problem faced by the

system. Because the linguistic input is typically consistent with multiple syntactic pos-

sibilities, the processing system must determine the set of possible syntactic hypotheses,

maintain some or all of these in memory, and update them as new input arrives.

Behavioral evidence from a rapidly expanding literature on how people read tem-

porarily ambiguous sentences provides an empirical benchmark for evaluating theories

of syntactic processing (see Tanenhaus & Trueswell, 1995). Evidence from intuitions

and from empirical studies of processing di�culty|typically studies using reading time

measures with temporarily ambiguous sentences|have clearly established that readers

have strong preferences for some structures over others. When subsequent input be-

comes inconsistent with the preferred structure, the result is processing di�culty for the

reader.

The sentence in example (1), taken from Bever (1970), is a classic example of such

a \garden-path" sentence.

(1) The horse raced past the barn fell.

The reader assumes that the �rst six words of the sentence form a main clause

in the active voice with \raced" being a past tense main verb, and \the horse" playing

the role of \agent" of the racing event. This hypothesis is discon�rmed by the word
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\fell", however, resulting in long reading times and confusion. Many readers are unable

to arrive at the \grammatical" analysis in which \fell" is the main verb, and \the horse

(which was) raced past the barn" as its subject.

Within traditional symbolic systems, syntactic hypotheses are typically computed

by a parser|a set of procedures that maps the input onto partial syntactic structures

that are consistent with the syntactic constraints of the language. These constraints

are described by a grammar consisting of a set of rules/and or constraints de�ned over

syntactic categories, such as Noun and Noun Phrase. The procedures that comprise the

parser build structures using the knowledge base de�ned by the grammar.

A variety of structural hypotheses have been proposed to account for why some

structures are preferred over others in an initial stage of structure building. These

hypotheses are typically couched in terms of the complexity of structure building op-

erations, and/or memory demands (see Frazier & Clifton, 1996; Gibson (to appear),

for recent reviews). In such two-stage models, a second set of procedures is involved in

recovering from misanalysis when the preferred structure selected in the initial parse is

rejected.

However, recent research has highlighted a number of phenomena that are prob-

lematic for this view. A growing body of evidence indicates that syntactic processing

is simultaneously a�ected by semantic, syntactic and discourse-based information (for

reviews see MacDonald, et al., 1994; Tanenhaus & Trueswell, 1995). Moreover, process-

ing is sensitive to di�erences among individual lexical items within syntactic categories.

Thus sentences like (2) are much easier to process than sentences like (1) even though

the sequence of standard lexical categories (\Det Noun Verb[ed form] Preposition etc.")

is identical across the two examples.
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(2) The salmon released in the ocean died.

In addition, the speed with which readers process the words of sentences like (1) and (2)

is correlated with graded properties of the linguistic input that are not easily reduced to

purely structural factors. For example, the degree to which readers have di�culty at the

second verb in these sentences is negatively correlated with the degree to which the �rst

verb tends to occur, in large natural language corpora, as a past participle (MacDonald

et al, 1994; Trueswell, 1996).

Phenomena like these have led a number of researchers to propose constraint-

based frameworks in which multiple sources of constraint provide probabilistic evidence

in support of the most likely syntactic alternatives. Ambiguity resolution is viewed as a

constraint-satisfaction process, involving competition among incompatible alternatives.

As a sentence unfolds, the alternatives are evaluated using evidence provided by the

current input as well as the preceding context (Cottrell and Small, 1983, 1984; Cottrell,

1985; Waltz and Pollack, 1985; St. John and McClelland, 1990; MacDonald et al., l994;

Spivey-Knowlton, 1996). Processing di�culty occurs when input is encountered that is

inconsistent with the previously biased alternative.

Connectionist (or neural network) models are one variety of constraint-based mod-

els. Typically, their properties as learning devices play a central role in their use as

models. In particular, it is often suggested that the systematic properties of language

which motivate the positing of specialized structures in a symbolic paradigm will arise

as \emergent properties" under connectionist learning. The interest of this claim is not

merely that it provides an explicit proposal about the grammar-induction part of the

theory. It is also suggested that the emergent counterparts of symbolic mechanisms will
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be di�erent from them in important ways.

We endorse all of these claims here, but note that much previous connectionist

modeling of syntactic structures has been inexplicit about what these emergent struc-

tures are and how, exactly, they di�er from their symbolic counterparts. This paper

and Tabor et al. 1997 argue that a connectionist, learning-based system can be explicit

about \emergent properties" by using the constructs of dynamical systems theory.

Dynamical systems theory is the theory of systems that are described in terms of

how they change. Formally, this description has the form of a di�erential equation or

an iterated map. Commonly studied examples of real dynamical systems are swinging

pendulums, orbiting planets, circulating uids, etc. Certain constructs are useful in

analyzing such systems: trajectories, �xed points (or stable states), attractors, basins,

saddlepoints (see Abraham and Shaw, 1984 and Strogatz, 1994 for introductions). Along

with Cornell Juliano, we �rst explored the idea that such constructs might be useful

in clarifying the principles underlying connectionist sentence processing (Tabor et al.,

1997). There, we focussed on the way the dynamical approach allows us to handle class

frequency e�ects and the interaction of formal similarity with structural constraints.

The present paper continues this line of investigation by focusing on how the dynamical

approach handles early e�ects of thematic role biases, often put forth as evidence for

constraint-based modeling, without losing track of the structural constraints.

Our work is similar to other recent connectionist approaches to parsing in that we

train a variant of a Simple Recurrent Network (SRN) using the prediction task developed

by Elman (1991). The input to the model is a sequence of words generated by a �nite

state or context free grammar. The model forms representations of parse states in its

hidden unit space. It places words that are likely to be followed by similar constructions
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nearby one another in the hidden unit space (Elman, 1990, 1991; Christiansen, 1994, Ta-

bor, 1994). In symbolic parameter-setting models of grammar learning (e.g., Lightfoot,

1991) syntactic structures are listed fully-formed in a mental warehouse of possibilities

prior to learning. By contrast, in network models like ours, syntactic structure is built up

by the network as it learns to process the input. The result is a correspondingly greater

inuence of the learning process on the �nal performance of the system (Christiansen,

1994; Christiansen and Chater, in press; MacDonald and Christiansen, 1998).

While prior learning connectionist models have revealed the important role that

experience (or training) plays in adult sentence processing, they lack an explicit analog

of reading times. Instead, they typically map output activations onto reading times

with a formula (Christiansen & Chater, in press; MacDonald & Christiansen, 1998)

Moreover, the representations developed by these and many connectionist models are

hard to interpret in terms that reveal the structural principles underlying the models'

empirical successes.

To address these shortcomings, we add a dynamical processor to the SRN. This

processor transforms the sometimes ambivalent representations produced by the network

into unique parse hypotheses, requiring varying amounts of time to do so. The model's

processing time is taken as an analog of human reading time. The dynamical component

operates on the set of states visited by the network when it is processing a large random

sample of text and it uses a gravitational mechanism to group these into distinct classes,

thus providing useful structural information about the SRN's representation. We refer

to the resulting model, which we �rst explored in Tabor et al. (1997) as the Visitation

Set Gravitation (or VSG) model.
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1.2 Overview of the paper

The remainder of this article is organized into three sections. In Section 2, we de�ne

the VSG model and motivate it by describing related modeling work. In Section 3 we

show how the model can incorporate a kind of \semantic constraint" (the thematic role

biases of nouns) into the resolution process. An appealing characteristic of the model

is that it appears to make the intuitively appropriate distinction between syntactically

and semantically incongruous sentences. Section 4 concludes.

2. The VSG model and related dynamical models

2.1 The VSG model

The VSG model has two components: a network similar to a Simple Recurrent Network

or \SRN" (Elman 1990, 1991) and a gravitation module.

Elman (1991) describes a procedure for training a particular connectionist network,

the SRN, to predict distributional information about a corpus of words. Each word in

the corpus is assigned a unique indexical bit vector (a vector with one element equal

to 1 and all others equal to 0). These vectors are presented on the input layer of the

network in the order in which the corresponding words occur in the corpus. The network

is trained on the task of predicting on the output layer, which word is coming next for

each input.

Elman uses a 3-layer feedforward network with a \context layer" feeding into the

hidden layer at each timestep (Elman, 1991). The context layer contains a copy of the
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hidden unit activations on the previous time step. The network is trained using the

backpropagation algorithm (e.g., Rumelhart, et al., 1986). This feedforward network

with a context layer has the same relaxation dynamics as a three layer network with

complete interconnection among its hidden units (on the assumption that each unit is

updated exactly once each time a word is presented, with the input and context units

updated �rst, then the hidden units, and then the output units). Elman's training pro-

cedure is an approximation of the Backpropagation Through Time (BPTT) algorithm

(Rumelhart, et al., 1986) in which the error propagation through the recurrent connec-

tions in the hidden units is cut o� after it has been propagated back through just one

hidden-layer time step. (Thus input-to-hidden weights only receive an error signal from

the current-time hidden units.)1

In the simulations discussed below, we used the same recurrent architecture as El-

man did for the relaxation dynamics, but carried error propagation through two hidden-

layer time steps while still adjusting input-to-hidden weights only on the basis of the

current time step (see Figure 1). The extra time step makes learning the longer-distance

dependencies that occur in language tasks a little bit easier. Our network had 37 input

units, 10 hidden units and 37 output units. The hidden units at all time steps had

�xed sigmoid activation functions (yi = 1=(1 + e�neti) where neti is the net input to

unit i). The output units as a group had normalized exponential (or softmax) activation

functions (yi = eneti=
P

j2Outputs enetj ) . The output error for input p was thus de�ned

for \1-of-n" classi�cation by Equation 1,

||||| insert equation 1 about here |||||

where yj is the activation of unit j for input p and tj is the target for unit j on that input

(Rumelhart, et al., 1995) and backpropagated through the unfolded network.2 Weights
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were adjusted after every input presentation. The network was trained on the output of

a simple grammar approximating those features of English syntax which appear to be

relevant to the phenomenon we model. The phenomenon, the grammar, and the training

speci�cs are described in detail in Section 3.

||||| insert �gure 1 about here |||||

The second component of the VSG model, the gravitation module, operates on the

hidden layer representations of the trained recurrent network. Elman's work and our

earlier work (Tabor et al., 1996) suggests that words in context with similar distributional

characteristics are placed near one another in the hidden unit space by an SRN. A

consequence is that if we sample the hidden unit activations of the trained network over

a wide range of constructions from the training language, we may �nd a set of clusters of

points, where points in the same cluster correspond to grammatically equivalent states

of the generating language. The VSG's gravitation module is a clustering mechanism

which �nds such equivalence classes of states. It operates as follows. Once the network is

trained, we present it with a large random sample of sentences generated by the grammar

and record all the hidden unit states visited (that is to say, the visitation set) during

the processing of this sample. We treat each of these points as a �xed mass of unit

magnitude in the 10-dimensional hidden unit space. We then test the processing of a

particular word-in-context by treating the hidden unit location of that word-in-context

as a test mass (also of unit magnitude) which is free to move under the gravitational

inuence of all the �xed masses. Typically, the test mass will be near the center of mass

of some dense cluster and will gravitate into that cluster. We model processing time

as the time required to gravitate into the cluster. One can think of the �xed masses

as representing typical previous experiences with the language. Thus, the gravitational
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mechanism implements the idea that, in responding to a new instance of a word-in-

context, the processor analogizes that word-in-context to its previous experiences and

gravitates to a cluster corresponding to the most-similar previous experience. The points

in the centers of the clusters where the system is stable are called attractors.3 The set

of all starting points from which the system gravitates into a particular attractor is

called its basin. In the case we study, under an appropriate parameterization of the

gravitational system, the system's basin structure de�nes a partition of the set of words-

in-context into equivalence classes. These classes correspond to states of the grammar

(Crutch�eld, 1994, Hopcroft & Ullman, 1979) that generated the training data.

The change in position of the test mass is de�ned by Equation (2).

||||| insert equation 2 about here |||||

where x is the position of the test mass, N indexes the �xed masses, xi is the position

of the i'th �xed mass, ri is the Euclidean distance between xi and x at time t, and p is a

gravitational strength parameter which determines the pulling power of each test mass.

This equation is an approximation of Newton's Law of Universal Gravitation when (i)

the test mass has zero velocity at in�nite distance from the �xed masses, (ii) p = 2, and

(iii) � is the Universal Gravitation Constant.

Equation 2 implies that every point in the visitation set is a singular point (i.e., a

point where the velocity goes to in�nity). To avoid in�nite velocities, which make the

structure of the system hard to detect, we introduce a threshold rmin and set r = rmin

whenever r becomes smaller than rmin. This makes the trajectories less prone to wild

jumps. The parameters, N , �, rmin, �t, and p are all free parameters of the model. The

�rst four of these are primarily relevant to making the performance of the model easy to

interpret.4 The last one, (p, or gravitational strength), is undesirably unconstrained|we
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set it to a value that makes the attractor basins correspond to distinct parse states as

de�ned by the training grammar. The fact that such a value for p has existed in nearly

all the cases we have tried so far indicates that the model is quite restrictive, for varying

p over all possible values de�nes a relatively small set of basin structures. Moreover, the

choice of p is closely tied to the constraints on learning and so there may be a way to bind

it less stipulatively (See the next subsection for discussion). Under these assumptions,

the test mass will typically speed up as it approaches a �xed point (or chaotic attractor)

near the center of mass of a cluster, overshoot the attractor (because it is unlikely that

the mass will land exactly on a �xed point for positive �t), and then head back toward

the center of mass for another \y-by". Our algorithm for determining gravitation times

thus computes the number of steps it takes the test mass to reverse direction for the

�rst time (where a direction reversal is a turn of more than 90� in one step).

In sum, the VSG model is trained like an SRN. It generates predictions of reading

times as follows:

(i) Feed a sentence one word at a time to the trained network using SRN

relaxation dynamics.

(ii) For each word of the sentence, use the gravitation module to determine

a gravitation time.

(iii) Compare gravitation time pro�les (e.g., across words in a sentence) to

reading time pro�les.

Note that the gravitation module operates completely independently of the recurrent

network: the outcome of the relaxation dynamics does not a�ect the network's processing

of the subsequent word.
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2.2 Previous related models

In order to motivate the model we have just described, we review previous, related mod-

els. Several of the models we discuss are connectionist models. It is worth noting that

most connectionist models are dynamical systems of the standard sort: their operation

can be described by a di�erential equation for which the state change is a continuous

function of the parameters (or weights) of the network. In fact, one can distinguish

two important dynamical regimes within the connectionist framework: learning dynam-

ics and relaxation dynamics. Learning dynamics involve slow adjustment of connection

weights in an attempt to �nd a minimum of a cost function. Relaxation dynamics in-

volve rapid adjustment of activation values in order to compute an output. The VSG

model clari�es the relationship between these two types of dynamical regimes by show-

ing how there are relaxation dynamics (albeit in a non-connectionist system) that reveal

structural properties of the learning dynamical system for one type of network (the

SRN).

Earlier connectionist processing models (e.g., McClelland and Rumelhart, 1981;

Cottrell and Small, 1983, 1984; Cottrell, 1985, Waltz and Pollack, 1985) usually ex-

amined the relaxation dynamics of hand-designed models. Nodes represented concepts

that are naturally interpretable by human beings (e.g., [the word \throw"], [the concept,

toss]), and all node properties were explicitly designed by the researchers|no learning

was involved. These models had many of the properties that we make use of here.

For example: (i) Competition between simultaneously valid parses increased processing

time. (ii) The magnitudes of real-valued weights were adjusted to reect contrasts in

frequency and thus gave rise to biases in favor of more frequently-encountered interpre-
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tations (e.g., Cottrell and Small, 1984). (iii) Sometimes, \spurious" attractive states

arose which corresponded to no interpretation (e.g., Cottrell and Small, 1984). In some

earlier models, these spurious states were considered a liability because some parsable

sentences got stuck in them. Below, in Section 3.3.2, we show that certain \spurious

states" are an asset in that they provide a plausible model of what happens when one

attempts to parse an ungrammatical string (cf. Plaut et al., 1996);. (iv) Syntactic and

semantic information were used simultaneously to constrain the parse (e.g., Cottrell &

Small, 1983; Cottrell, 1985).

The development of the backpropagation algorithm for learning (Rumelhart et

al., 1986) and its promotion as a useful tool in psychological modeling (Rumelhart and

McClelland, 1986) led to a new class of connectionist parsing models. This algorithm

made it possible to set weights and hidden node interpretations in a systematic way,

without requiring as many subjective guesses as were needed in hand-designed mod-

els. Currently, the most successful learning connectionist models of sentence processing

are Elman's Simple Recurrent Network or SRN (Elman 1990, 1991) and its variants

(e.g., St. John & McClelland, 1990).5 Elman's model can approximate the word-to-word

transition likelihoods associated with a simple text corpus, thus embodying information

relevant to the syntax and semantics of the language of the corpus to the degree that

these are reected in distributional properties.

While the learning dynamics of Elman's model are complex and interesting, the

relaxation dynamics are uniform and uninformative. Since each node is updated exactly

once after a word is presented, the network's processing time is identical from word

to word and cannot plausibly be interpreted as a model of human processing time.

Several researchers (Christiansen & Chater, in press; MacDonald & Christiansen, 1998)
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have shown that a well-chosen de�nition of SRN output error can be mapped onto

processing times. A desirable next step is to model word-to-word processing explicitly

in the relaxation dynamics. Such explicitness is one goal of the VSG approach.

Moreover, as in many connectionist simulations, the principles governing the El-

man model's speci�c predictions are not usually easy to surmise: the trained network's

model of its environment is a complexly shaped manifold in a high-dimensional space.

Although 1-dimensional quantities like error measures and cost functions can give in-

sight into local properties of this manifold, they do not tell us much about its structure.

A useful addition would be some summarizing category information, indicating which

pieces of the manifold are important and what role they play in organizing the linguistic

task. Thus, a second aim of the VSG approach is to use dynamical systems theory to

reveal this summarizing category information by approximating certain basins, attrac-

tors, saddlepoints etc. which are implicit in the SRN's learning dynamics. For example,

as we noted above, the attractors of the VSG model map onto distinct parse states of

the language learned by the network (see Section 3.2.3).

Although, the VSG model is inelegant in that it is a hybrid of two distinct dynam-

ical systems, we view it is a useful stepping stone to a more mathematically streamlined

and more neurally plausible model. In particular, the dynamics of the gravitation mod-

ule are roughly paralleled by the dynamics of recurrent connectionist networks which

settle to �xed points after each word presentation. In current work, we are exploring the

use of the recurrent backpropagation (RBP) algorithm (Almeida, 1987; Pineda, 1995)

to train such networks on sentence processing tasks. In these models, the learning pro-

cess drives the formation of attractor basins, so the free parameter p is eliminated and

the categorization system stems from independently motivated constraints such as the
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number of hidden units and the nature of the activation function. However, the task

of learning complex syntax in an RBP network is harder. Thus, an advantage of the

VSG model is that it permits us to use the currently more syntactically capable SRN to

explore the e�ectiveness of dynamical constructs. If the predictions are borne out, then

the motivation for solving the learning challenges facing RBP becomes greater.

The attractor basins de�ned by the VSG model are primarily valuable for the

insight they provide into the representations learned by an SRN. One may reasonably

wonder, though, if they have any motivation independent of the problem of predicting

reading times. In fact, there is an independent functional motivation for having attractor

basins: when we interpret language, we make, and probably need to make, discrete

choices. Waltz and Pollack (1985) note that although we can comprehend the multiple

meanings of wholly ambiguous sentences (e.g. Trust shrinks; Respect remains; Exercise

smarts|p. 52) we seem to ip-op between them rather than simultaneously understand

both. Moreover, it is clearly important to be able to conclude that in a sentence like

Jack believed Josh was lying, Josh is not an object of the matrix clause but a subject

of the embedded clause, even though processing evidence suggests that we temporarily

entertain the former hypothesis. It has not previously been evident how to map the real-

valued states of an SRN onto such discrete interpretations. The VSG model provides a

principled method of mapping from the SRN state vectors to discrete parse states which

may be useful in distinguishing meanings.

We noted earlier that constraint-satisfaction models have been proposed as an

alternative to \two-stage" models of sentence processing (Frazier and Clifton, 1996). The

VSG model also performs computations in two distinct stages|the recurrent network

computation, and the gravitation computation. But there are important di�erences
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between the VSG model and traditional two-stage models. In the VSG model, there

is no early stage during which some information is systematically ignored. Rather all

information is present from the beginning of each word's settling process. Moreover,

the second stage does not involve deconstructing and rebuilding parse trees, but rather

migrating in a continuous space. Finally, systematic biases in favor of one structure over

another stem mainly from greater experience with the preferred structure, not from an

avoid-complexity strategy (see MacDonald and Christiansen, 1998).

2.3 Previous VSG results

In our earlier work (Tabor, Juliano, and Tanenhaus, 1997), we showed that the VSG

model predicts word-by-word reading times in a set of cases that are challenging for other

theories. We summarize the results here in order to situate our further exploration of

the model.

In one simulation, we considered lexical category ambiguities involving the word

\that", which exhibit an interesting mix of contingent frequency e�ects (Juliano &

Tanenhaus, 1993; Tabor et al, 1997). The sentences in (3) illustrate that \that" can be

either a determiner (a and c) or a complementizer (b and d). The number of the noun

disambiguates \that" as either a determiner (singular) or a complementizer (plural).

(3) a. That marmot whistles.

b. That marmots whistle is surprising.

c. A girl thinks that marmot whistles.

d. A girl thinks that marmots whistle.
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The results of Juliano and Tanenhaus (1993) indicate that processing times in these four

sentences are predicted by the hypothesis that readers slow down when they encounter

words that violate their expectations about typical usage, as determined from a corpus

analysis. In particular, \that" is more frequent as a determiner than as a complementizer

sentence-initially, but it is more frequent as a complementizer than as a determiner post-

verbally. Thus, (3a) is easier than (3b), while (3c) is harder than (3d) at the words

following \that". These results are consistent with a host of experimental results which

suggest that reading times are correlated with the unexpectedness of continuations (see

Jurafsky, 1996, for review). In Tabor et al. (1997), we showed that such e�ects fall out of

the VSG model because of the denser visitation clusters associated with more-frequent

continuations. Denser clusters give rise to stronger gravitational pull and hence more

rapid gravitation.

On the other hand, the correlation between unexpectedness and reading times is

not perfect. It seems to be skewed by the category structure of the grammar. For

example, Juliano and Tanenhaus (1993) found that, after strictly transitive verbs like

visited, the word that and a following adjective (4a) was read more slowly than the word

those and a following adjective (4b).

(4) a. The writer visited that old cemetery.

b. The writer visited those old cemeteries.

Such a result cannot be attributed to the frequency of that vs. those after transitive verbs

because the frequencies are essentially the same (at least in the Penn Treebank). The

VSG model predicts the e�ect at the determiner as a case of attractor competition. The

word that following a transitive verb bears a distributional resemblance to that following
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a sentence-complement verb. Therefore, the position assigned by the recurrent net to

that following a transitive verb is intermediate in the gravitation �eld between the at-

tractor for that following a sentence-complement verb and the attractor for unambiguous

determiners following transitive verbs. By contrast, since those is not ambiguous, those

following a transitive verb starts very close to the appropriate attractor. Since that starts

farther away from the attractor and its gravitation is slowed by the presence of a nearby

attractor, it is processed more slowly than those in the relevant examples.6 Tabor et

al. (1997) showed how a similar e�ect predicts the observed higher reading times at the

after a pure sentence complement verb like insisted than at the after a transitive verb

like visited (Juliano & Tanenhaus, 1993).

These two cases illustrate two advantageous properties of the VSG model: (i) it is

consistent with the pervasive evidence showing that reading time is inversely correlated

with class frequency; (ii) it diverges appropriately from the frequency-based predictions

in cases where class similarity e�ects distort these. The VSG model predicts the latter,

smoothing e�ects by letting similarities similarities between categories distort the internal

structure of the attractor basins associated with the categories. It is possible that a

similar prediction can be made by a model that computes expectations based on a

probabilistic grammar (e.g., Jurafsky, 1996). However, it appears that some kind of

as-yet-unspeci�ed statistical smoothing (Charniak, 1993) across grammatical classes is

required (Tabor et al., 1997). It is also possible that a model which treats reading time

as a kind of output error in an SRN (e.g., Christiansen & Chater, in press; MacDonald

& Christiansen, 1998) would also predict divergences from frequency-based predictions

due to class similarity since position contrasts in the hidden unit space tend to map to

position contrasts in the output space. But, as we have noted, such one-dimensional
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measures do not encode information about direction of displacement so it is hard to tell,

in such models, if similarity is indeed the source of the error.

3. Case Study: Thematic Expectation

The simulations just described only examined pure syntactic contrasts in the sense that

the complement requirements of the verbs and the agreement requirements of the deter-

miners were categorical. It is of some interest, then, to investigate how the VSG model

performs in a case where the contrast is not categorical in this way. Such cases arise

in association with what are generally thought of as \semantic" distinctions. A good

example is thematic role assignment. Almost any noun can �ll any role, but if a noun

that is unsuitable for a given role is forced to play that role, the result is a sentence that

sounds \semantically strange" or \incongruous" (5).

(5) a. # The customer was served by the jukebox.

b. # The car accused the pedestrian of cheating.

Semantically strange sentences seem to violate our expectations about what is likely to

happen in the world but they do not violate our expectations about what can happen

in the language in the same way that ungrammatical sentences do. Linguistic theories

generally posit two distinct mechanisms for handling semantic and syntactic incongruity.

Semantic violation is thought to be detected on the basis of world knowledge, whereas

syntactic incongruity results from violating rules of grammar. This set of assumptions

is very useful in that it has allowed us to recognize the e�ectiveness of abstract syntactic

mechanisms at organizing linguistic information. Moreover there is psychophysiologi-
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cal data from studies using event-related potentials suggesting that the two kinds of

violations result in qualitatively di�erent patterns of brain responses (Garnsey, 1993;

Osterhout & Holcomb, 1993; Hagoort et al., 1993; Ainsworth-Darnell et al., 1998).

The distinction between syntactic and semantic incongruity is especially interesting

from the perspective of connectionist models. Both semantic and syntactic constraints

a�ect the distributional structure of words in the language. This raises the possibil-

ity that a connectionist device trained on distributional information could model both

classes of constraints. We show that this hypothesis is supported by the VSG model in

the following sense: the gravitational mechanism, de�ned by the representation devel-

oped by a connectionist network, exhibits what might best be called a graded qualitative

distinction (Section 3.3.2) between semantic and syntactic incongruity.

The claim that \semantic" information can be learned by a model which only

interacts with corpus data is surprising. Clearly a model without an extra-linguistic

world cannot simulate the relationship between language and the extra-linguistic world,

and thus cannot be a full semantic model, in one common sense of the term. However, we

may ask if such a model provides the right \hooks" for interfacing with the world. In this

case, corpus-based models may have something useful to contribute. Corpuses contain

a good deal of information beyond what the syntax of a language provides. Indeed,

Burgess & Lund (1997), Landauer & Dumais (1997) among others have shown that much

information which is standardly termed \semantic" can be extracted from a corpus by

evaluating co-occurrence statistics. Much of this information is information about which

words tend to be used in combination with which other words, given that they can be so

used. The usual strategy in linguistic modeling is to note that such information reects

properties of the world that can be learned independently of language|indeed some of
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it is the kind of knowledge that animals and prelinguistic children seem to have|and to

try to simplify the job of the language theory by assuming that it does not incorporate

such knowledge. But this may be misguided: since the information about tendencies of

usage is available in the speech we hear, it is possible that the \language mechanism" is

actually shaped by this usage as well as by abstract grammatical constraints. In fact, a

theory which posits such a \world-molded" language mechanism may be better suited to

providing a full model of the language-world relationship than one which assumes strict

independence, because it has the structures needed for interfacing. On the other hand,

there is a potential problem with trying to let the language mechanism encode too much

detail about the world: the theory may become too complex or unduly unrestrictive.7

The dynamical systems framework is a way around the latter pitfall: the details of subtle

di�erences in the \semantic" biases of words are encoded in small di�erences in position

in the metric representation space; but the basin con�guration of the system as a whole

provides an organizing category structure which is computationally simple.

To explore these issues in a speci�c case, we examined the role of thematic �t in

syntactic ambiguity resolution, focusing on the results of McRae et al. (1998).

3.1 The Phenomenon

McRae et al. (1998) examined the way the thematic properties of a subject and verb

inuenced readers' biases in favor of a reduced relative versus a main clause reading in

sentences like (6a) and (6b).

(6) a. The cop / arrested by / the detective / was guilty / of taking / bribes.

b. The crook / arrested by / the detective / was guilty / of taking / bribes.
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McRae et al. performed an o�ine rating task in which subjects were asked to

answer questions such as \How common is it for a cop to arrest someone?" by providing

a number on a scale of 1-7 (where 1 corresponds to very uncommon and 7 to very

common). On this basis, they grouped \cop" and similarly rated nouns together as

\Good Agents" and they grouped \crook" and similarly rated nouns together as \Good

Patients". They then studied self-paced reading times in regions like those shown in (6).

A summary of their results is graphed in Figure 2. The graph plots a \reduction e�ect",

measured in milliseconds versus sentence region. The reduction e�ect is the di�erence

between the reading time of sentences like (6) and the corresponding unreduced cases in

which \who was" was inserted before the �rst verb.

||||| insert �gure 2 about here |||||

Three properties of the data are worth highlighting. (i) There is an immediate

e�ect of thematic bias : in the verb+"by" region, the Good Patients give rise to higher

reading times than the Good Agents. (ii) Reading times are longer where there is a

conict between the biases of the preceding context and the biases of the current word,

e.g., at the (agentive) verb after a Good Patient subject, and at the NP following a Good

Agent subject and verb. (iii) Reading times show an \inertia" e�ect. Even when the

linguistic input provides information that could, in principle be used to strongly reject

a previously entertained parse, (e.g., the word \by" after the verb), the processor seems

to shift only gradually over to the new hypothesis.

McRae et al. showed that the reading time pro�les can be plausibly interpreted as

stemming from competition between two alternative syntactic hypotheses: (Hypothesis

X) the �rst verb (e.g., \arrested") is the main verb of the sentence, or (Hypothesis

Y) it is a verb in a reduced relative clause. For Good Patients, there is competition
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between these two hypotheses beginning at the �rst verb, which resolves quickly when

supporting evidence for the reduced relatives comes from the \by"-phrase. For the Good

Agents there is a strong initial bias for the main clause, with competition beginning when

discon�rming information is encountered in the \by-phrase".

McRae et al. formalized the competition account by using Spivey-Knowlton's

(1996) Normalized Recurrence algorithm, in which multiple constraints provided sup-

port for two competing structures: main clause and reduced relative. The strength of

the constraints was determined by norms and corpus analysis. The weights were set

to model fragment completion data using the same materials. The same weights were

then used successfully to predict on-line reading times. In the simulation described next

we extend this result by showing how the weights can be set via connectionist learning

on corpus data resembling the signi�cant distributional properties of the McRae et al.

materials. The resulting model then predicts the three phenomena highlighted above:

immediate semantic inuences, competition-induced slow-downs, and inertia.

3.2 Thematic expectation simulation

3.2.1 The training grammar

The simulation grammar is shown in Table 1. This grammar generates a relatively

simple, symmetrical set of strings which share a number of properties with the English

sentences of interest. The quoted labels in the grammar and in the following discussion

(e.g., \Good Agt", \Good Pat") make this analogy explicit for the sake of giving the

reader some familiar labels to use as placeholders. Although the analogy is rough, and

we do not intend that the model map precisely onto human behavior, it is designed to
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make the central conceptual issues transparent. Such transparency is critical, we believe,

for getting past the typical opaqueness of connectionist models.

The grammar in Table 1 is designed so that the �rst word of each sentence can

be classi�ed as belonging to one of two classes, X or Y, which give rise to di�erent

expectations about which words are likely to occur next. X and Y correspond to \Good

Agent" and \Good Patient" respectively. The dominance of agentive constructions in

English is reected in the fact that sentences starting with X's outnumber sentences

starting with Y's by a ratio of 3:2. Also, as in English, there are initial X's and initial

Y's of a range of di�erent frequencies. The second word of each sentence is of the type

labeled V. It corresponds conceptually to the English verbs in McRae et al.'s study in the

following way: both X's and Y's are followed by the same set of Vs, but, depending on

which �rst word and V occurred, there is a bias as to how the sentence will end. Sentences

that begin with X words and are followed by V words with letter labels alphabetically

close to \a" tend to end with the most common members of the X2 and X3 categories

(ignoring, for a moment, the words with \1" in their labels). Sentences that begin with

Y and are followed by V's with letter labels alphabetically close to \f" tend to end with

the most common members of the Y2 and Y3 categories. In fact, the members of the

categories X2 and Y2 are the same, as are the members of the categories X3 and Y3,

but if the generating category is X2 or X3, then there is a bias toward words with labels

alphabetically close to \a", and if the generating category is Y2 or Y3, there is a bias

toward words with labels alphabetically close to \f". The word \p" is an end-of-sentence

marker, or \period".

The nonabsolute biases of the V, 1, and, 2 words mirror the fact that in natural

language, many words can be constituents of many constructions and thus do not provide
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a categorical signal, independent of their context, as to which parse hypothesis is correct;

but many of these same words have statistical tendencies which can be used to compute

a bias toward one construction or another in a given context (Rohde and Plaut, in

press). In the model, the local ambiguity of the words turns out to be essential to the

prediction of inertia e�ects: it forces the network to use its context representation to

compute expectations. As a result, the network tends to retain the parse bias it had at

earlier stages, only relinquishing it gradually.

There are however, some words in natural languages, the \closed class" or \func-

tion" words which provide fairly unambiguous cues as to which parse hypothesis is

correct. The word \by" is one such word in the McRae et al. materials. Here, the mem-

bers of the 1 category provide this kind of categorical constraining information. \1a"

through \1c" are only compatible with an X2 X3 ending, while \1d" through \1f" are

only compatible with a Y2 Y3 ending. Note that both X and Y initial words can be

followed by both kinds of endings, but there is a bias for X initial words to be followed

by X2 X3 endings and for Y initial words to be followed by Y2 Y3 endings. Follow-

ing McRae et al.'s investigation, we will examine a case in which these tendencies are

violated.

||||| insert table 1 about here |||||

3.2.2 Training the network

The grammar was used to generate data for training the network described in Section 2.1.

Before training began, the weights and biases of the network were assigned uniformly

distributed random values in the interval [-0.5, 0.5]. The network's learning rate was

set at 0.05. Momentum was not used. The grammar de�nes ten states (states are dis-
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tinct if they induce di�erent distributions over the set of all possible future sequences|

Crutch�eld, 1994; cf. Hopcroft and Ullman, 1979). The network was trained until it was

distinguishing and reasonably approximating the transition likelihoods of all ten states.

The grammar sanctions 12 � 64 = 15552 grammatical strings. Each juncture-between-

words in a string is associated with a probability distribution over next-words which can

be computed from the grammar. We compared the network's output for each juncture to

the grammar-generated distribution for that juncture and asked if the distance between

these two distributions was less than one half the minimum distance between any two

grammar-determined distributions.8 We stopped training when a hand-picked sample of

such comparisons yielded positive outcomes and then evaluated this comparison for the

whole language to �nd that the comparison yielded a positive outcome for 94% of the

15552�6 = 93312 junctures between words. At this point, the network had been trained

on 50,000 word presentations. We re-initialized the weights and retrained the network

�ve times for the same number of word presentations. We determinded by inspection

that the visitation set had nearly identical (10-cluster) structure in three out of the six

cases, and similar structure in all cases. The results reported below are based on the

�rst case.

3.2.3 The gravitation mechanism

After some experimentation, we set the gravitation module parameters to n = 2000,

rmin = 0:01, � = 0:0002, and p = 2:7. With these settings, the dynamical processor

had an attractor corresponding to each state associated with the training grammar.

There were two attractors associated with initial words, V words, 1 words, and 2 words.

The two attractors correspond to the X (\Main Clause") reading and the Y (\Reduced
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Relative") readings, respectively, in the sense that sentences which had a high likelihood

of �nishing with letter labels alphabetically near \a" were consistently drawn into the

X attractor and those with a high likelihood of �nishing with labels near \f" were

consistently drawn into the Y attractor. There was one attractor for the 3 position and

one for the end-of-sentence marker, \p".

3.3 Reading Time Results

In analogy with McRae et al.'s study of reduced relatives after Good Agents and Good

Patients, we compared the reading times on a Y (\Reduced Relative") continuation for

sentences beginning respectively, with X (\Main Clause bias") words and Y (\Reduced

Relative bias") words. Because our grammar did not include the option of disambiguat-

ing the V (\Verb") word syntactically, prior to its occurrence (as in English The cop

who was arrested. . . ) we were not able to use such disambiguated cases as a baseline.

However, in the simulation we only had a few relevant cases to measure and there was

not much noise so the e�ect of contrasting initial word biases was evident without such

baselining.

A sample result is shown in Figure 3. The dotted line shows gravitation times for

the string \yd vc 1d 2d 3d p" (\Crook arrested by detective escaped.") and the solid

line shows times for \xc vc 1d 2d 3d p" (\Cop arrested by detective escaped.") The

pattern shows the central properties of the human reading time data: (i) immediate

e�ects of new information, even though the information is merely semantically biasing

(at the V word, for example, there is an e�ect of the bias of the immediately preceding

N word) (ii) cross-over of the magnitudes of the reading times during the course of the
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sentence (�rst the Y or RR-bias sentence shows a spike in reading time; then the X or

MC-bias sentence shows one), (iii) inertia in the parse choice. (Each spike has a tail

which dwindles over the course of several following words).

||||| insert �gure 3 about here |||||

These results suggest that the VSG model can reproduce a number of signi�cant

features of human reading time patterns when trained on distributional information

reecting certain thematic role induced biases. The next subsection analyzes the model's

predictions.

3.3.1 Induction of competition e�ects

The fact that the gravitation times of the VSG model show a similar pattern to the

human data is encouraging. Examining the representations and the processing dynam-

ics of the VSG model reveals that the VSG model is predicting the human data by

implementing a competition mechanism very much like Spivey-Knowlton's Normalized

Recurrence Algorithm.

Figure 4 provides a global view of the visitation set for the simulation. This image

was obtained by performing Principal Component Analysis (PCA) on the set of 2000

hidden unit locations used in the gravitational model. PCA (Jolli�e, 1986) is a way of

choosing coordinate axes that are maximally aligned with the variance across a set of

points in a space.9 It is used here simply as a way of viewing the visitation set, and plays

no role in the predictions made by the model.

The visitation set is grouped into major regions corresponding to the six major

categories of the grammar (initial word, V word, 1 word, 2 word, 3 word, and �nal word



29

(\p")).10 Two of these categories overlap in the two- dimensional reduced image (\V"

and \2"), but they do not overlap in the 10-dimensional space. Several of the major

regions seem to have two distinct clusters within them in Figure 4. These correspond to

the two parse hypotheses, X (\Main Clause") and Y (\Reduced Relative").

||||| insert �gure 4 about here |||||

To see this more clearly, it is helpful to zero in on one of the major clusters. Figure

5 shows a new PCA view of the points where the connectionist network places the system

when its input layer is receiving a V word (the new PCA is based on all and only the

V word points). Here, we can clearly see the two clusters corresponding to the X and Y

readings. These two clusters give rise to two attractors which are at the centers of the

circles in the diagram.11

Three trajectories are shown. These trajectories correspond to three sentences

which start \xc vc. . . ", \yc vc. . . " and \yf vf. . . " respectively. The \xc vc. . . " and

\yf vf. . . " cases, roughly analogous to \cop arrested" and \evidence examined", are the

the beginnings of normal sentences which typically give rise to X (\Main Clause") and

Y (\Reduced Relative") interpretations respectively. Since their classi�cation status is

quite clearcut, the processor lands close to the appropriate attractor when the V word

is presented and gravitation takes only two time steps.12 By contrast, the sentence that

starts with \yc vc" (analogous to \crook arrested") has conicting information in it. The

�rst word indicates that the processor should favor the Y attractor, but the second word

(\vc") is predominantly associated with an X continuation. As a result, the processor

lands in an intermediate position when the second word is presented. It gravitates to

the X attractor, but the gravitation takes a long while (8 time steps).

||||| insert �gure 5 about here |||||
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In Figure 6, we show a close-up of the \1" region of the visitation set. Here we can

observe one-word continuations of the sentences shown in Figure 5. The case of central

interest is \xc vc 1d". We can think of this case as analogous to a partial sentence like

\Cop arrested by. . . ", which starts o� with a Good Agent and is followed by an agentive

verb, but continues with a \by"-phrase which strongly signals the unexpected Reduced

Relative interpretation. In such cases, people showed latencies at the agentive noun

phrase in the \by"-phrase which were quite high compared to a control case with a Good

Patient subject (e.g., \Crook arrested by detective. . . "). While the model processes "xc

vc" with ease, the subsequent \1d" lands it in an intermediate position and thus gives

rise to a very long gravitation time (13 time steps). The corresponding control case, \yc

vc 1d", (\ Crook arrested by. . . ") produces a nonminimal trajectory at \1d" as well, but

the starting point is initially much closer to the \Y" attractor and the gravitation time is

correspondingly shorter (5 time steps). Thus, these two strings, when compared at their

\V" words and \1" words, produce the crossing latency-values pattern that distinguishes

McRae et al.'s data. It is true that the simulation shows the crossing pattern more

immediately in response to the disambiguating information than the human subjects

appear to (i.e. at the �rst disambiguating word), but as we noted above, this may be

due to the weakness of the parafoveal \by" signal; it may also reect the more complex

ambiguity of natural language \by" which we have noted.

||||| insert �gure 6 about here |||||

For comparison, Figure 6 also shows a case of gravitation to the \X" attractor in

the \1" region: the partial sentence, \yf-vf-1a" (presumably comparable to something

like, \The evidence examined him. . . ."). In this case, the �rst two words strongly

favor a \Y" (\Reduced Relative") continuation, while the third word requires an \X"
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(\Main Clause") continuation. The result is a nonminimal reading time at \1a" but

not the superelevated reading time of the focus case, \xc-vc-1d". This intermediate

reading time makes sense because high frequency bias-revising information (\1a") is

more e�ective at overcoming the contextual bias than the relatively low frequency bias-

revising information (\1d") of the focus case.

These examples indicate that the VSG model mirrors the two-attractor account of

McRae et al. in the details of its dynamics. The behavior patterns illustrated are robust

in the sense that they recur whenever the same sentences are presented with di�erent

preceding contexts, and they persist if we choose appropriately biased cases which are

distributionally similar. The pattern becomes distorted if we make one or another bias

especially strong, or change the directions of some of the biases. Nevertheless, the

cases we have focused on here seem most closely analogous to the human subject cases

which we are using as a standard. Thus, it appears that given the constraint that the

gravitation mechanism needs to form a distinct attractor basin for every syntactically

distinct context, the VSG model succeeds in deriving the hypothesized competition

mechanism from the distributional properties of its training corpus.

3.3.2 Emergence of a syntax/semantics distinction

We now show that the gravitational component of the VSG model induces a distinction

between types of violations which lines up in a plausible way with the distinction between

syntactic and semantic violations as judged by human beings. The essence of the induced

contrast is that grammatical processing (including the processing of semantically strange

sentences) involves gravitation directly into an attractor while ungrammatical processing

involves gravitation �rst into a saddlepoint (a �xed point which attracts trajectories
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from one region of the state space and repels them into another), and only later into

an attractor. Often, the saddlepoint delays convergence so long that we can say the

processor fails to �nd an interpretation in \reasonable time".

In order to illustrate this point, we extend the analogy between natural language

and our arti�cial Thematic Bias Grammar. The category sequence of the training gram-

mar is very strict in the sense that none of the �ve sequential categories is ever omitted

and the elements always follow one another in the same order. Thus skipping or re-

peating categories produces something analogous to a natural language grammaticality

violation. We now describe a simulation in which we compared the VSGmodel's response

to analogs of semantic violation with its response to analogs of syntactic violations.

Figure 7 shows two sample trajectories, one corresponding to a semantic violation

and one corresponding to a syntactic violation. The semantic violation is one of the

cases depicted in Figure 6. It occurs at the word \1d" in the sentence, \xc vc 1d 2d

3d p" (analogous to \Cop arrested by detective left."). As we noted, the bias of the

�rst two words toward X continuations is contradicted by the bias of the third word

toward Y continuations so the processor slows down substantially at this word (13 time

steps). Nevertheless, the string is grammatical in the sense that its category sequence

is sanctioned by the grammar.

The syntactic violation in Figure 7 occurs at the word 'p' in the string, \xb va 1a

p" (analogous to \Cop arrested the.") This string is ungrammatical because it ends after

the third word, skipping the 2 and 3 categories. The VSG model's response in this case

is substantially di�erent from its response in the previous case. The starting point of the

trajectory (labeled \1a-p") is remote from all of the clusters that are associated with

normal sentence processing. Moreover, the trajectory stretches for a long way across
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empty space and gets pulled into what looks like an attractor midway between the \X

1" region and the \X 2" region. After 30 time steps it still has not gravitated into one of

the clusters associated with normal processing. The apparent attractor is a saddlepoint.

If gravitation proceeds for a much longer time, the trajectory will eventually reach an

attractor. But it is clearly waylayed in a signi�cant way compared to the trajectory of

the semantic violation.

||||| insert �gure 7 about here |||||

Figure 7 provides a suggestion that the VSG model is treating grammatical vi-

olations di�erently from semantic ones: semantic violations involve direct gravitation

into an attractor; syntactic violations involve parse-blocking delay by a saddlepoint. To

probe the legitimacy of this idea more thoroughly, we studied the model's response to

a sample of 20 semantic violations and 20 syntactic violations. These examples were

constructed by hand in an e�ort to test a range of types of conditions.

The model's response to syntactic anomaly turned out to have a fairly character-

istic pattern, although the results were not as simple as the single test case described

above suggests. Whenever a word of the wrong category occurred at a particular point

in a string, the starting point of the trajectory tended to be a compromise between

the contextually appropriate attractor and the attractor associated with the anomalous

word. The result was that the syntactic anomalies nearly always placed the processor

in a \no man's land", far from any of the attractors. In every case the trajectory was in

the basin of the contextually appropriate attractor. In some cases, the trajectory was

drawn into a saddlepoint which was close to the contextually appropriate attractor. The

'1a-p' trajectory in Figure 7 is a case like this: the contextually appropriate attractor is

the 'X 2' attractor (east of the label \2" in Figure 7). In other cases, the trajectory went
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quickly into the contextually appropriate attractor despite the anomaly. An example is

the word 'ye' after 'yf' in the sentence, \yf ye vf 1f 2e 3f p", which resulted in gravitation

into the `Y V' region in 3 timesteps. Often, in this latter kind of case, the word following

the anomalous word produced a trajectory that was still trapped behind a saddlepoint

at the 30th time step. In this sense, the model sometimes showed delayed sensitivity to

an anomaly.13 We do not at this point know why the long reaction times were sometimes

coincident with the anomalous word and sometimes delayed by a word or two, but we

note that this behavior may be consistent with human behavior and bears further look-

ing into. Because of the sometimes delayed response to the anomaly, we assessed the

outcome of the 20-sentence trials by examining the trajectory for the anomalous word

and the word following it and tabulating results for whichever of these trajectories was

longer. We applied this method to both the semantically anomalous sentences and the

syntactically anomalous strings. Figure 8 plots the velocity pro�les of these maximally

anomalous trajectories for the two sets of examples. The velocity between two successive

points ~xi and ~xj on a trajectory is taken to be the distance between ~xi and ~xj (since

each step takes unit time). The �gure makes the contrast between the two sets apparent

and a t-test shows a clear di�erence in the mean maximal gravitation times (p < 0.0001,

19 d.f.).

||||| insert �gure 8 about here |||||

Figure 8 suggests thinking of the di�erence between grammatical and ungram-

matical strings as a graded qualitative di�erence. At one extreme are the parses which

involve short, direct trajectories into an attractor and thus result in very short process-

ing times. At the other extreme are trajectories which land on what is called the stable

manifold of a saddlepoint. The stable manifold contains those points which happen to
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be at the balance point between the competing attractors and from which the system

gravitates into the saddlepoint itself, never reaching an attractor. These two kinds of

behaviors are qualitatively distinct: in the �rst case the processor arrives at a repre-

sentation which is associated with an interpretation; in the second case it never arrives

at such an interpretation. However, almost all real examples are a mixture of these

two types: even the most stoutly grammatical examples show very slight inuence of

deection by saddlepoints; the most atrocious grammatical anomalies are very unlikely

to land on a stable manifold of a saddlepoint, and thus will eventually gravitate into

an attractor. But despite the gradedness of the di�erence, there is a clear clustering of

strings into two classes: grammatical and ungrammatical.

This framework provides a useful new conceptualization of the notion of grammat-

icality. The framework makes several kinds of testable predictions: (i) people should

show gradations of reading times on grammatical and ungrammatical sentences even

when they are happy to make binary judgments about them (ii) lexical or other con-

textual biasing can downgrade a semantic anomaly into an ungrammaticality and vice

versa (iii) there can be variation in the location of anomalous latencies with respect to

syntactic violations. These predictions di�erentiate the VSG model from all models that

make an absolute distinction between grammatical and ungrammatical sentences as well

as form models like the SRN, which treat all contrasts on a grey-scale.

4. Conclusions

This paper has described an application of the Visitation Set Gravitation (VSG) model,

which was �rst described in Tabor et al. (1997), to sentence comprehension phenomena



36

involving graded di�erences in lexical information. We focused on the results of McRae et

al. (1998), showing, in particular, that the VSG model correctly predicts (i) immediate

sensitivity to graded lexical biases, (ii) a general association between elevated reading

times and conict between the parse biases of the previous context and the current word,

(iii) inertia e�ects: that is, the tendency for the processor to resolve a conict between

parse biases gradually, over the course of reading several words, even if the words provide

strongly constraining information. The inertia e�ect is important because it provides

new evidence distinguishing the VSG model from closely related models which posit

a systematic correlation between the unexpectedness of a word class and its reading

time (Jurafsky, 1996). Tabor et al., 1997, described a related phenomenon, smoothing,

in which class similarity e�ects cause reading times to diverge from expectation-based

predictions.

The main theoretical insight of the paper, building on Tabor et al., 1997, is that

dynamical systems theory provides a useful set of tools for understanding the represen-

tational properties of high-dimensional learning models like Elman's Simple Recurrent

Network (SRN). We noted, in particular, that the VSG model can be tuned so its at-

tractor basins identify clusters in the SRN's representation space which correspond to

states of the generating process. Clustering seems to be an important step in mapping

from the continuous representations of learning models to the discrete representations of

linguistic models, which are good for research insight and good for discrete assignment of

interpretations. The current results suggest that the VSG model provides an improve-

ment over hierarchical clustering methods of discretizing connectionst representations

(e.g., Elman, 1990; Pollack, 1990; Servan-Schreiber, et al., 1991), for these provide no

obvious way of picking out a linguistically or statistically relevant subset of a cluster
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hierarchy.

Finally, we identi�ed a new case in which a construct of dynamical systems theory is

useful in modeling a phenomenon in sentence processing: the contrast between semantic

violation and syntactic violation. We found that the processing of grammatical strings

(meaning those which could be generated by the training grammar) tended to involve

gravitation directly into an attractor, while the processing of ungrammatical strings

usually led to gravitation into a saddle point which greatly delayed arrival at an attractor.

This result provides a way of mapping the entirely relativistic representation of an SRN

(it rules out no string) onto the intuitively observable contrast between semantic and

syntactic violation. It also makes contact with empirical work showing contrasts in brain

activity for the two kinds of processing (e.g., Ainsworth-Darnell et al., 1998).

The VSG model has several shortcomings.

First, the link between the SRN and the gravitation mechanism is weak in that we

invoke an external constraint (the requirement that attractor basins line up with parse

states) to set the parameter p. If varying the parameter p over all possible values could

produce arbitrary attractor basin con�gurations, then the dynamical component would

contributing no structural insight at all in virtue of the machine state correspondences.

But the model is, in fact, fairly tightly constrained: experimentation suggests that

varying p leads to a relatively small range of basin con�gurations, with a simple case in

which there is only one basin (p = 0) and a limiting case in which every point in the

visitation set has its own basin. This constrainedness suggests that the architectural

assumptions of the model are doing some explanatory work. As we noted in Section 2.2,

however, it would be desirable if the value of p could be determined independently of a

grammatical oracle. Our current work is investigating this possibility.
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Second, we have only analyzed VSG behavior on a very simple formal language.

We feel it is useful to do this at �rst in order to build a foundation. It is desirable,

however, to study more realistic cases|e.g., one could incorporate a number of speci�c

correlations between subjects and verbs like the fact that \cop" is a good subject for

\arrest" and \employee" is a good object for \hired" rather than a binary contrast

between two biases (Good Agent vs. Good Patient). To this end, it is also important

to address the question of how to represent phrase structural relationships as well as

simple contrasts between states in a �nite-state language. Wiles and Elman, (1995),

Rodriguez et al. (to appear), and Tabor (1998) provide some insight into this problem

by looking at how SRNs and related devices can represent context free grammars. Here, a

central question is, How should the learning mechanism generalize from its �nite training

experience to an in�nite-state language?

Third, as an anonymous reviewer emphasized, the quicker processing of semantic

violations than grammatical violations in the current simulation is not surprising, given

that the model is likely to have seen most semantic violations in training. A �rst step

toward demonstrating that the model exhibits some generalization ability would be to

�lter small random samples of the 15552 possible sentences from the training data, and

then test these examples to see if they behave like grammatical strings. Clearly, how-

ever, real semantic anomaly is not randomly distributed across grammatically legitimate

combinations: it is associated with the juxtaposition of particular word classes. Thus,

to make a more interesting test, we need to design a grammar in which certain classes of

words never directly co-occur, although they have a strong higher-order correlation (e.g.,

\dogs" may never be said to \meow" or \purr" but they \eat", \run", \play", \sleep",

etc.|things that \meow"-ing and \purr"-ing individuals commonly do). The question
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is whether the gravitation mechanism will be able to appropriately group clusters of

clusters into the same attractor basin in such a case.

These challenges are nontrivial, but it is encouraging to note that they are expected

consequences of asking the challenging question that motivates the VSG model: How can

one get, in a principled way, from the relativistic perspective of a learning model (where

we prefer not to assume that anything is impossible) to an absolutist perspective which

supports categorical choice-making. It is not obvious that there is any universally right

way of taking this step. Nevertheless, simpler architectural assumptions seem desirable.

Dynamical systems theory typically starts with a very simple assumption in the form of

a class of equations. Many interesting structures emerge. Perhaps, this paper suggests,

these structures are a kind of sca�olding via which emergentist cognitivists can hoist

themselves out of the sea of relativism.
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Further Readings

The PDP volumes (McClelland & Rumelhart, 1986, and Rumelhart & McClelland,

1986b) provide an excellent introduction to the use of connectionist networks as

cognitive models. For a nice visual introduction to dynamical systems theory, see

the �ve volumes of Abraham and Shaw (1984). Strogatz (1994) is an enjoyable textbook:

it blends theory with colorful examples. Perko (1991) is more rigorous and trenchant.

On dynamical systems in cognition, see Port and van Gelder (1995) and van Gelder

(1999). For good overviews of recurrent connectionist networks, see Williams and

Zipser (1995) and Pearlmutter (1995). For a helpful explication of recurrent backpropa-

gation networks (RBP) in particular see Haykin (1994). There has been a steady stream

of work on connectionist symbol processing: Jagota et al. (1999) give a rundown.

Ti�no and Dor�ner (1998) and Tabor (1998) are recent developments on the question of

representation. Elman (1995) motivates the dynamical systems approach to modeling

natural language, summarizing the main insights of the two inuential papers (Elman

1990, 1991) on the Simple Recurrent Network (SRN). Frazier (1988) is a helpful tutorial

on two-stage (or garden path) models of sentence processing. Von Gompel, Pickering,

and Traxler (1999) provide evidence that many current models of sentence processing,

including current dynamical systems models, are missing an important probabilistic el-

ement. Gibson (1998) provides substantial evidence for e�ects of memory load, also an

important challenge for dynamical and connectionist models (though see Christiansen

and Chater, in press, for helpful insights). For a tour de force on the use of dynamical

connectionist models for word recognition, see Kawamoto (1993).
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Footnotes:

1See Williams and Peng for a discussion of other approximations to BPTT.

2Thus, the hidden-to-output weights were adjusted according to

�wji / yi�j = yi(tj � yj)

while the input-to-hidden and hidden-to-hidden weights were adjusted according to

�wji / yi�j = yif
0(netj)

X

k

wkj�k

where wji is the weight from unit i to unit j, k ranges over units that units that unit

j sends activation to, and f 0(netj) = yj(1 � yj) is the derivative of the �xed sigmoid

activation function (and input-to-hidden weights were adjusted only on the basis of the

current inputs).

3In fact, although some gravitational systems thus de�ned have �xed points near

the centers of clusters, many appear to have chaotic attractors (see Strogatz, 1994).

These chaotic attractors behave approximately like �xed points. Since we are only

interested in approximations in the models anyway, we treat such attractors as if they

are �xed points.

4N must be large enough to make the cluster structure of the visitation set dis-

cernible; � controls the rate of gravitation but does not a�ect relative rates of gravitation,

so it can be scaled for implementational convenience. Without loss of generality, then,

we assume �t = 1.

5See also Selman and Hirst (1985) for a systematic method of setting weights in a

Boltzmann Machine parser without learning.
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6Gibson and Tunstall (1999 and personal communication) argue that all frequency

e�ects in processing are either semantic (and hence outside of grammar) or lexical. They,

in fact, provide evidence that the contrast between that and those after transitive verbs

is due to the lexical preference of that for being a complementizer independent of syn-

tactic context. They invoke a third, memory-based constraint system (Gibson, 1998) to

handle the sentence-initial contrast between determiner that and complementizer that.

The VSG model may well treat the e�ects after transitive verbs as essentially lexical

(further simulation studies are needed). But even if the e�ect is lexical and expectations

are semantic, the point still stands that some principled mechanism for mediating be-

tween local biases and contextually derived expectations is needed. The VSG account

is appealing in this regard because it handles all of these phenomena with one formal-

ism instead of three and speci�es a mediating mechanism: the semi-pliable hidden unit

manifold of the neural network (see Tabor, 1995).

7See Newmeyer (1986) for an articulation of the viewpoint that the theory of

Generative Semantics foundered on such a shoal.

8For this grammar, the minimum distance between grammar-determined distribu-

tions is 0.9410|this is, for example, the distance between the distribution associated

with the partial string \xa. . . " and the distribution associated with the partial string,

\ya. . . ".

9In the case at hand, the original hidden unit space had 10 dimensions. The �rst

two principal components captured 56 percent of the variance.

10To make Figure 4 interpretable, we have circled and labeled the regions corre-

sponding to distinct classes based on our knowledge of the grammar and of which words
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correspond to which points.

11The circles were drawn as follows: an estimation of the location of the attractor

was computed by averaging the second- and third-to-last positions of the trajectory for

several trajectories and a circle of �xed radius was drawn with this point as its center.

Recall that the trajectory is considered at an end when it makes a turn of more than

90 degrees on one step. This happens immediately after it has passed by the attractor.

Therefore the attractor is usually located somewhere between the second- and third-

to-last positions, so their average provides a reasonable estimate of its location. The

circle radii have no explanatory signi�cance|they are just a method of identifying the

attractor location without obscuring the view by putting a label right on it.

12The �rst step of each trajectory is marked by \1" ; the second step brings the

trajectory into the attractor and is not shown in order to make the diagram easier to

read.

13Note that all the anomalous sentences ended with sequences of words consistent

with the anomalous word. This fact, in combination with the strong contextual domi-

nance exhibited by the model makes it unsurprising that the word after an anomalous

word was often associated with a long gravitation time: the model was still sticking to

its original parse bias at this point. By the time three words had passed, however, the

model typically shifted its hypothesis to the new perspective. These e�ects are thus a

more extreme version of the inertia e�ects that we saw in conjunction with semantic

anomalies.
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Equation 1:

Ep = log
Y

j2Outputs

y
tj
j (1)

Equation 2:

�~x

�t
= �

NX

i=1

~xi � ~x

rip
(2)



55

Table 1

Training grammar for the Thematic Bias Simulation

0.67 S ! X VX VPX p (\MC")

0.33 S ! Y VY VPY p (\RR")

0.67 X ! xa (\Good Agt") 0.02 Y ! ya (\Good Pat")

0.17 X ! xb (\Good Agt") 0.03 Y ! yb (\Good Pat")

0.07 X ! xc (\Good Agt") 0.04 Y ! yc (\Good Pat")

0.04 X ! xd (\Good Agt") 0.07 Y ! yd (\Good Pat")

0.03 X ! xe (\Good Agt") 0.17 Y ! ye (\Good Pat")

0.02 X ! xf (\Good Agt") 0.67 Y ! yf (\Good Pat")

0.67 VX ! va (\MC Bias Verb") 0.02 VY ! va (\RR Bias Verb")

0.17 VX ! vb (\MC Bias Verb") 0.03 VY ! vb (\RR Bias Verb")
0.07 VX ! vc (\MC Bias Verb") 0.04 VY ! vc (\RR Bias Verb")

0.04 VX ! vd (\MC Bias Verb") 0.07 VY ! vd (\RR Bias Verb")

0.03 VX ! ve (\MC Bias Verb") 0.17 VY ! ve (\RR Bias Verb")

0.02 VX ! vf (\MC Bias Verb") 0.67 VY ! vf (\RR Bias Verb")

0.67 VPX ! 1a X2 X3 (\MC") 0.02 VPY ! 1a X2 X3 (\MC")

0.17 VPX ! 1b X2 X3 (\MC") 0.03 VPY ! 1b X2 X3 (\MC")

0.07 VPX ! 1c X2 X3 (\MC") 0.04 VPY ! 1c X2 X3 (\MC")

0.04 VPX ! 1d Y2 Y3 (\RR") 0.07 VPY ! 1d Y2 Y3 (\RR")

0.03 VPX ! 1e Y2 Y3 (\RR") 0.17 VPY ! 1e Y2 Y3 (\RR")

0.02 VPX ! 1f Y2 Y3 (\RR") 0.67 VPY ! 1f Y2 Y3 (\RR")

0.67 X2 ! 2a (\MC") 0.02 Y2 ! 2a (\RR")

0.17 X2 ! 2b (\MC") 0.03 Y2 ! 2b (\RR")

0.07 X2 ! 2c (\MC") 0.04 Y2 ! 2c (\RR")

0.04 X2 ! 2d (\MC") 0.07 Y2 ! 2d (\RR")

0.03 X2 ! 2e (\MC") 0.17 Y2 ! 2e (\RR")

0.02 X2 ! 2f (\MC") 0.67 Y2 ! 2f (\RR")

0.67 X3 ! 3a (\MC") 0.02 Y3 ! 3a (\RR")

0.17 X3 ! 3b (\MC") 0.03 Y3 ! 3b (\RR")

0.07 X3 ! 3c (\MC") 0.04 Y3 ! 3c (\RR")
0.04 X3 ! 3d (\MC") 0.07 Y3 ! 3d (\RR")

0.03 X3 ! 3e (\MC") 0.17 Y3 ! 3e (\RR")

0.02 X3 ! 3f (\MC") 0.67 Y3 ! 3f (\RR")

Note. MC = Main Clause; RR = Reduced Relative. The quoted labels
specify the analogy with English.
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Figure Captions

Figure 1. Three layer network with recurrent connections in the hidden layer (imple-

mented as partial unfolding across time).

Figure 2. Crossed and smoothed latencies in the main clause/reduced relative ambiguity

(after McRae et al., 1998). The \X" sentences began with \Good Agents"; the \O"

sentences began with \Good Patients".

Figure 3. Gravitation times for the thematic bias simulation.

Figure 4. Global view of the visitation set for the thematic bias simulation.

Figure 5. Three trajectories in the \V" region. (The label \yc-vc" identi�es the starting

point of the trajectory that ensued when \vc" had been presented on the input layer after

\yc". The numbers '1', '2', '3', etc. proceeding from this label indicate the trajectory

itself. The other labels have similar interpretations.)

Figure 6. Three trajectories in the \1" region. (See previous �gure for explanation of

labels.)

Figure 7. Trajectories for a semantic anomaly (labeled 'vc-1d' and a syntactic anomaly

(labeled '1a-p'). The semantic anomaly occurs at the word '1d' in the sentence 'xc-vc-

1d-2d-3d-p'. The syntactic anomaly occurs at the word 'p' in the string 'xb-va-1a-p'.

Figure 8. Velocity pro�les for 20 semantically and 20 syntactically anomalous transitions.

The pro�le is pictured for either the word at which the anomaly occurred or the word

following this word, whichever had a longer gravitation time.



57

OUTPUTt (37 units)  . . . 

HIDDENt (10 units)  . . . 
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Semantically anomalous transitions.
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Syntactically anomalous transitions.
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