
The Value of Symbolic Computation

Whitney Tabor
Department of Psychology
University of Connecticut

Standard generative linguistic theory, which uses discrete symbolic models of cogni-
tion, has some strengths and weaknesses. It is strong on providing a network of out-
posts that make scientific travel in the jungles of natural language feasible. It is weak
in that it currently depends on the elaborate and unformalized use of intuition to de-
velop critical supporting assumptions about each data point. In this regard, it is not in
a position to characterize natural language systems in the lawful terms that ecological
psychologists strive for. Connectionist learning models offer some help: They define
lawful relations between linguistic environments and language systems. But our un-
derstanding of them is currently weak, especially when it comes to natural language
syntax. Fortunately, symbolic linguistic analysis can help connectionism if the two
meet via dynamical systems theory. I discuss a case in point: Insights from linguistic
explorations of natural language syntax appear to have identified information struc-
tures that are particularly relevant to understanding ecologically appealing but ana-
lytically mysterious connectionist learning models.

This article is concerned with the relation between discrete, symbolic systems of the
sort that have been widely used in linguists’ formal analyses of natural languages
and continuous dynamical systems that many ecological psychologists have found in-
sightful, especially for understanding limb movement and visual perception. It be-
gins by casting the discrete, symbolic linguistic models as unecological in several re-
spects (see also Carello, Turvey, Kugler, & Shaw, 1984). Connectionist (or artificial
neural-network) models, a particular type of dynamical system, are offered as a
more ecological alternative. But despite their strengths, these connectionist mod-
els suffer from a certain opacity, which makes it difficult to understand what they
are doing and how to improve their performance. A helpful way of overcoming this
opacity is to explore their capabilities using discrete, symbolic models as reference
points. The symbolic models are identical in behavior to certain special cases of the

ECOLOGICAL PSYCHOLOGY, 14(1–2), 21–51
Copyright © 2002, Lawrence Erlbaum Associates, Inc.

Requests for reprints should be sent to Whitney Tabor, Department of Psychology, U-0020, Univer-
sity of Connecticut, Storrs, CT 06269–1020. E-mail: tabor@uconnvm.uconn.edu

dynamical models and these cases are useful to know about because they are rela-
tively easy to understand. The result points to a general correspondence between
regimes of symbolic and dynamical systems and suggests that to understand partic-
ularly complex dynamical processes, symbolic insights may be helpful.

By discrete symbolic computation, I mean something very like Carello et al.’s
(1984) use of the term discrete-mode computation. This kind of computation goes
hand in hand with the “representationalist” approach to cognition, which Gibson
(1979/1986) so soundly rejects, and discrete symbolic theories of psychology often
take out “a loan of intelligence” (Dennett, 1978, p. 12) of the sort that many eco-
logical psychologists quite reasonably deplore. The aim of the present article is not
to suggest that discrete symbolic computation is accurate or complete as a founda-
tion for psychology, but rather that it provides insights into the structuring of infor-
mation, and these insights may turn out to be helpful to ecological psychology.
Synergy between the perspectives might thus be worth seeking.

I begin with some examples. The formal linguistic theory called generative lin-
guistics, working in a discrete and symbolic mode, maps a sentence such as (1) to a
representation along the lines of (2).

(1) The June bug, which Bob had trapped in the neighbor’s screened
porch, careened erratically but vigorously between the siding and the
mesh.

(2)

Under the framework proposed by Frege (1892/1952) and laid out by Montague
(1970/1974), this representation supports an interpretation along the following
lines: The generic meaning of the and the generic meaning of June bug combine to

22 TABOR

form the meaning of the June bug; that meaning combines with the meaning of
trapped in such a way as to convey the notion of the June bug being trapped, rather
than doing the trapping, for example; the generic meanings of the and neighbor also
combine to define a meaning for the neighbor, and so on. It thus fits into a rather
broad coverage and effective theory (compositional semantics) of how the literal
meanings of sentences can be derived from the generic meanings of their words.

ECOLOGICAL CRITIQUE

Despite its power, there are a number of drawbacks to Analysis 2 if it is taken as a
portrayal of the mentation associated with an actual instance of comprehending
(or producing) a natural language sentence. Many of these drawbacks can be re-
lated to concerns that ecological psychologists have expressed about representa-
tionalist approaches to cognition in general. I will discuss three: staticness, con-
text-freeness, and lack of emphasis on lawfulness.

First, staticness: Time is not a variable in a phrase-structure diagram. Thus, the
phrase-tree viewpoint seems immediately at odds with the ecological emphasis on
action: “The ecological approach asserts that the concept of information cannot be
developed systematically apart from considerations of activity” (Turvey & Carello,
1981, p. 316). I take the relevant sense of “activity” here to be the activity of inter-
acting with (e.g., comprehending, producing) language as it unfolds over time. It is
true that a phrase-structure analysis often provides a map of its utterance across
time (usually left-to-right in the diagram corresponds to history-to-future in time).
But because such a map is not explicit about what mental states are occurring as
the utterance develops through time, theories of parsing have been proposed—
that is to say, theories of how the tree structure and its meaning get built over time
when an utterance is interpreted or formulated. There are a multitude of possible
temporal programs for building tree structures. Much research is dedicated to mea-
suring human interaction with sentences over time in an effort to figure out which
one of these programs is correct. But if the temporal information were not factored
out of the encoding process in the first place—that is, if the theory of encoding
were required to produce something that not only embodied structures but also
built them as the input unfolded temporally—then it might well be possible to de-
rive predictions about the time course of processing directly from the mechanism
that establishes the encoding, bypassing this nettlesome problem.

A second concern is that the phrase-structure approach gains a great deal of its
efficiency from its assumption that the building blocks of tree diagrams (e.g., rules
such as NP → Det N) are context-free abstractions over language content. Ecological
psychologists have long objected to context-free mental objects. Indeed, they are
cumbersome when the focus is on the ongoing mutual influence between organism
and environment. The standardly cited linguistic cases involve deixis—linguistic
elements whose function is to refer context dependently to entities in the world

SYMBOLIC COMPUTATION 23

(e.g., I, tonight; Turvey & Carello, 1981). Abstract phrase-structure objects, such as
NP → Det N, might seem, at first glance, to be less susceptible to criticism on this
account, because they capture patterns that are remarkably stable across instances
of the use of a language, and in fact, they provide a helpfully sturdy skeletal struc-
ture within which the flexibility of deictic elements can be well modeled (van Eijck
& Kamp, 1996). Nevertheless, there are reasons to be skeptical. There are many
informational regularities that cut across the independent phrasal units (Charniak,
1993).

For example, in (3),

(3) The chicken which Fred baked was not ready to eat.

the chicken is interpreted as the patient of eating (the one that gets eaten) when
the verb eat is read. But in (4),

(4) The chicken which Fred fed was not ready to eat.

the chicken is more likely to be interpreted as the agent of eating. The difference
between the two chickens is determined by the content of the embedded relative
clause, which is phrase-structurally quite remote from the verb eat. Somehow, the
information has to be transported across the tree so that the parser can select the
right role assignments at eat. A useful strategy adopted by several linguistic theo-
rists (e.g., Bresnan, 1982; Joshi & Schabes, 1996; Pollard & Sag, 1994) is to employ
features that “percolate” from daughter nodes to mother nodes or vice versa and
thus carry information to places the context-free rules do not get it to (other theo-
ries employ syntactic transformations with similar effect, e.g., Chomsky, 1981). It is
tempting to adopt such a strategy in this case by, for example, letting the verb feed
generate a feature [+alive] specifying that its patient (the thing fed) ought to be
alive, by letting [+alive] percolate from its starting point in the relative clause up
to chicken, by simultaneously letting the verb eat specify that its agent should be
[+alive] while its patient should be [–alive], by letting the feature from chicken
percolate down through the main clause to eat, and by letting the parser examine
the two different ways of linking the subject of be with an argument of eat in order
to choose the one for which the features are consistent. Workable as this approach
might be for this case, its plausibility is cast into doubt by (5),

(5) The chicken which Fred last fed just yesterday is now ready to eat.

which has exactly the same verbs and nouns in the same phrase-structural rela-
tions to one another but seems to be biased toward the cooked chicken interpreta-
tion. The temporal adverbs (last, just yesterday, and now) are making the difference
but it is not clear how that difference could be expressed via modulation of the per-
colating features. Taking an inspiration from Gibson (1979/1986), one might sug-

24 TABOR

gest that perceivers of language do not perceive meaning via context-free syntactic
abstractions, but rather they directly perceive meaning. See Tanenhaus, Carlson,
and Trueswell (1989) for an experimental development that points toward a simi-
lar conclusion.

Third, the program of inquiry underlying analysis (2) only weakly supports a
lawful treatment of the language–environment system. By a lawful treatment, I
mean here a complete and coherent characterization of how the proposed mental
state and the proposed environment coevolve at the timescale of moment-to-mo-
ment experience. This definition of lawfulness sounds like it could, in principle, ac-
commodate different types of lawfulness from the “specificational” sense that eco-
logical psychologists generally focus on (Turvey & Carello, 1985). For the case at
hand, I do not think it does. In the body of this article I use the term lawfulness as I
have just defined it. In the conclusion, I return to the question of how my use of the
term lawfulness is related in its use among Gibsonian psychologists.

For linguistic lawfulness, two levels of completeness need considering. I refer to
the first, less complete level as processing lawfulness and to the second, more-com-
plete level as inductive lawfulness. Processing lawfulness characterizes the relation
between a language utterance unfolding through time and the associated mental
trajectory of its generator–perceiver. Inductive lawfulness characterizes the rela-
tion between an entire linguistic environment (consisting, for example, of all the
linguistic experience a person has during childhood) and the associated processing
map from utterances in contexts to mental trajectories. Generative linguistic the-
ory has not rejected lawfulness in either of these senses. But there is an issue of how
much commitment the methodology of the approach has to seeing the lawfulness
through.

The problem is not so much with processing lawfulness. If the individual words
can be identified and assigned meanings, then the standard models based on dia-
grams such as (1) seem to be within range of providing a lawful account of how lin-
guistic utterances specify mental states (up to symbolic ambiguity) and vice versa
(Kamp & Reyle, 1993; Montague, 1970/1974; van Eijck & Kamp, 1996). But gener-
ative linguistics has shied away from studying inductive lawfulness from an early day
when Chomsky (1957) argued that “discovery procedures” (which build grammars
from scratch, based on experience) are hard to devise, but “evaluation procedures”
(which select among a finite set of clearly distinct options that evolution has made
conveniently available) are easier. The idea seems to have been that if enough of the
territoryof linguistic structurecouldbemappedout inaccuratedetail, thentheprob-
lem of induction could be reduced to making a finite set of binary, or n-ary, choices
based on the observation of easily recognized “triggers.” Indeed a number of propos-
als along these lines have been put forth (Gibson & Wexler, 1994; Hyams, 1986;
Lasnik, 1990). But unifying laws are lacking, and most researchers in the field pay lit-
tle attention to the predictions of these inductive models, relying instead primarily
on intuition to establish most of the structural background (in particular, the tree di-
agrams) on which models of specific utterances are built.

SYMBOLIC COMPUTATION 25

I suggest that in the case of language, it is crucial to have a full-fledged account
of both processing lawfulness and inductive lawfulness. Here, language contrasts,
at least in degree, with the domains that are typically studied by ecological psychol-
ogists, for example, visually guided locomotion, dynamic touch, wielding, and so
forth. Ecological psychologists do not usually object, for example, to attempts to
characterize organism-relevant invariants of optic flow without first building a the-
ory of how an organism learns to detect those invariants (if, indeed, learning is re-
quired at all in that case). But there is a fairly strong sense in which we understand
and can accurately model the nature of the materials (e.g., light, matter) involved
in situations where optic flow is important. The materials involved in “syntactic
flow” (ostensibly, words; lexical classes, such as noun, verb, adjective, etc.; and
phrasal classes, such as noun phrase, verb phrase, sentence, etc.) are more mysteri-
ous. In particular, their definitions are highly mutually dependent. Generative the-
ory assumes, for example, that an uttered word w counts as belonging to lexical
class C and as forming part of an instance of phrase class P, because assuming the
existence of C and P, along with the role that w plays in the instance at hand, pro-
vides optimal generalization of the theory about the set of potential utterances that
a native speaker commands. It is with the definition of “optimal generalization”
that inductive models are concerned. Because of the considerable interdepen-
dence of structure definitions under this notion, a theory of induction is essential
to a lawful treatment of language use.

CONNECTIONIST INSIGHT

Connectionist (or artificial neural-network) models (Haykin, 1994; Hertz, Krogh,
Palmer, 1991; Rumelhart, McClelland, & PDP Research Group, 1986) of language
offer an alternative to the generative linguistics approach that helps address sev-
eral of these ecological concerns. The next subsection gives a brief introduction to
the class of connectionist language models considered here. The following subsec-
tion examines the connectionist approach in light of the critiques.

Connectionist Models

Connectionist models are mathematical or computational models of organism be-
havior, which take their inspiration from neurobiology (O’Reilly & Munakata,
2000). In particular, they consist of networks of nodes and connections that resem-
ble, in a very pared-down way, networks of neurons and axons, synapses, and den-
drites. Each node i is associated with a number, ai, called its activation (analogous to
neural firing rate in real brain tissue); each connection between nodes is unidirec-
tional and is associated with a number, wij, called its weight (analogous to synaptic
strength). By convention, I use the term wij to denote the weight on the connection
from node j to node i.

26 TABOR

Networks undergo two types of change: activation change, which happens
quickly, is intended as a model of what psychologists typically call “behavior”;
weight change, which happens slowly, is intended as a model of “learning.” Activa-
tion change is specified by equation (1), where t indexes time.

In the present work, the activation function f is a smoothed step function or sig-

moid, usually f x
e x

() .=
+ −

1

1
Thus, each node computes a weighted sum of the in-

put from nodes that feed into it and becomes strongly activated if the sum is posi-
tive and weakly activated if the sum is negative.

Themodel is immersed inanenvironment.Weightchange is theprocessbywhich
the network attunes itself to the regularities (invariances) in its environment. In the
present case, following the paradigm developed by Elman (1990, 1991, 1995), the
model iteratively senses an event corresponding to the perception of a word in a
stream of speech and tries to predict the next event, which is assumed to be the per-
ception of the following word. To implement this idea, it is convenient to define one
set of nodes within the network as “input” (for sensing the current event) and an-
otheras “output” (forpredicting thenextevent), respectively; seeFigure1.1 Tomake
no prior assumptions about the structure of the data, an unbiased input–output en-
coding is used: Each word form corresponds to one unit on the input layer and one
unit on the output layer. Words from a large sample of language are presented to the
model in sequence. At the point of each word presentation, the unit corresponding
to the current word is activated on the input layer (all other input and output units
have activation 0). Observation of the following word in the language sample pro-
vides the basis for adjusting the weights of the model slightly so as to improve its abil-
ity to predict the future of its environment. Effective weight change is accomplished
by referring to a cost function that computes the discrepancy between the activation
pattern the network produces on its output layer and the word that actually occurs
next at each point in time. By choosing, as the measure of discrepancy, the
Kullback–Leibler divergence, D, between output activation and observed event
(log(/))D t t ai i i

i Outputs
=

∈
� where ti is 1 if word j occurred and 0 otherwise), one arrives at

SYMBOLIC COMPUTATION 27

�

� ��

() (())
(1)

() (1)

i i

i ij j
j

a t f net t

net t w a t

1To be able to interpret the outputs as probabilities, I have used the normalized exponential sigmoid

for the output units as a group: a e

e
i

net

net

j Outputs

i

j
=

∈
∑

.

a particularly simple and intuitive formula for reducing total cost on the basis of the
network’s experiences with each event: The change in the weight on the connection
from unit j to unit i, ∆wij, is given by ∆wij = (ti – ai)aj (Rumelhart, Durbin, Golden, &
Chauvin, 1995). This formula is called the delta rule. It says, essentially, to change
those weights most that come from active nodes (for they are the ones that are creat-
ing the current pattern), and change them in the direction that makes the network
more strongly expect what just happened in this context to happen again the next
time this context is encountered.

As Elman (1990, 1991, 1995), Christiansen (1994), Christiansen and Chater
(1999), Rohde and Plaut (1999), Tabor (1994), Tabor, Juliano, and Tanenhaus
(1997) have shown, this kind of network can do a reasonable job at learning syn-
tactic and semantic structure from a simple corpus of words approximating pat-
terns that occur in English. When it is exposed to a several-hundred-thousand
word corpus of sentences based on a simple vocabulary of 30 lexemes or so, it learns
to distribute activation over its output units in probability distributions that fairly
accurately characterize the semantic and syntactic constraints inherent in the cor-
pus. After an initial the, for example, the trained network distributes activations
mostly over adjectives and nouns; if it then gets an adjective such as happy, it dis-
tributes activation over compatible second adjectives and compatible nouns (e.g.,
those that refer to sentient creatures). In this sense, the network learns a time-sen-
sitive encoding of the syntactic and semantic structure of the corpus.

Ecological character of connectionism. In what ways does the connec-
tionist model address the previously outlined ecological critique of representation-
alist treatments?

28 TABOR

FIGURE 1 The simple recurrent network (Elman, 1990).

Regarding the staticness of the generativist representations, the network model
bringsat least some improvement.At the levelof theobjectswithwhich it isdesigned
to deal (sentences), the network interacts with those objects in a temporal sequence
that is similar to the sequence in which people interact with them in life: one word at
a time, starting fromthe firstword, going toward the lastword.Byembracing thispar-
ticular dynamical aspect of speech, the network encodes syntactic invariances en-
meshed with those “processing” invariants associated with temporal sequencing. In-
deed, Christiansen and Chater (1999) have shown that, in empirically prominent
ways, thebehaviorof thenetworkmodeldiverges fromthepredictionsof thesimplest
generative parsing theory in ways quite similar to the way humans diverge (e.g., both
networks and humans struggle with center-embedded structures such as “the dog
the cat the rat chased bit died”). Generative models of parsing generally posit an ad-
ditional mechanism (“memory load”; e.g., E. Gibson, 1998) to account for these
facts. The network account, by being more direct, avoids this disjunction.

Although no network of this sort has yet been successfully trained to pick up on
facts as subtle as the chicken–dinner vagaries illustrated previously, there is a sig-
nificant sense in which the network approach opens the door to a treatment of the
highly context-sensitive nature of natural language interpretation. Unlike the rep-
resentationalist account, which begins with context-freeness and tries to back
away from it as the data warrant, the network account begins with openness to ar-
bitrary context sensitivity and then tries to mold its attention (though not categori-
cally) to focus just on the most relevant facts in each context. For this reason,
learning network models essentially never assign the same encoding to two differ-
ent perceptions. Their internal codes are real-valued and sensitive to subtle prop-
erties of their environment, so the chance of two codes being identical is small (un-
less “design governs”—see reference to this later in this article). The network
models are thus more naturally context sensitive.

Finally, as previously suggested, because it learns an encoding in the service of a
simple functional task (predicting the future of its environment), the network in-
troduces a degree of lawfulness that surpasses the lawfulness achieved by the gener-
ative program. In network terminology, both activation change and weight change
are lawfully related to the properties of the network’s environment. These corre-
spond, respectively, to processing lawfulness and inductive lawfulness. Regarding
the latter, it is reasonable to say that the network builds a “grammar” by doing the
best it can to fit some rather flexible materials in its possession (its “hidden unit
manifold”) to the structure of the environmental invariants. How, one might ask,
is this different from the post hoc inductive models, mentioned previously, which
have been constructed on the basis of linguistic structural discoveries? If the dis-
crete parameters of the generative models can have arbitrary form and be great in
number, then the difference between symbolic, discrete-parameter models and dy-
namic, continuous-parameter models may be very subtle and hard to establish em-
pirically. What is different is that the network model effectively derives the param-
eter list from a single, simple principle—the learning rule. Also, by addressing

SYMBOLIC COMPUTATION 29

induction in quantitative terms, the connectionist approach necessitates the de-
velopment of specific distributional characterizations of the training data, so its an-
alytical emphasis is much more evenly distributed between organism and environ-
ment than in the more mindcentric generative approach.2 It can be said, then, that
the network model improves on lawfulness by providing a simple principle for law-
ful learning, as well as for lawful behavior.

A challenge for the connectionist approach. The foregoing discussion sug-
gests that connectionist language models address several of the ecological com-
plaints about representationalist models of language. But there is, it must be noted,
a substantial practical challenge for the connectionist approach. Connectionist
models labor hard to learn the kinds of complex temporal dependencies illustrated
in Example (1). Their temporal realism introduces a bias that makes the signals
coming from short temporal dependencies louder than the signals coming from
longer ones; moreover, their generalism with regard to possible dependencies im-
plies that, with even a few tens of vocabulary items and a couple of intervening
words, the correlational signals they are trying to detect in the longer, phrasal-de-
pendency cases are shrouded in a haze of noise created by irrelevant potential de-
pendencies, and this haze makes learning very difficult (Servan-Schreiber, Cleere-
mans, & McClelland, 1991). In other words, the very properties that make the
models desirable on ecological grounds seem to fetter them when it comes to han-
dling the complexities of natural language syntax.

Addressing the challenge. What can be done? In this section, I outline a
method (described in detail in Tabor, 2000) for encoding languagelike complex de-
pendencies in connectionist networks. The method, called dynamic automata or
fractal grammars, skips over the problem of learning and focuses directly on encod-
ing. Of course, this means it fails to fully meet the lawfulness desideratum identified
previously because it does not address induction. It also has a discrete symbolic
bias—it is a method of creating idealized, context-free structures whose sen-
tence-parsing abilities are exactly equivalent to the idealized symbol-manipulating
grammars that form the backbone of generative linguistics theories. This is useful, I
suggest, because it helps establish a set of bearing points in the wide sea of nonlin-
ear systems, which the connectionist networks are capable of embodying (Moore,

30 TABOR

2It is true that I and many connectionist modelers are quite happy to take it as a goal of research to
model “the mentation associated with an actual instance of comprehending.” This perspective might
seem to be at odds with that of J. Gibson (1979/1986) and many of his successors, who do not seek laws
characterizing sequences of mental events. I think this apparent contrast is false. Gibsonians may not
explicitly model mental events, but when they seek laws describing, for example, the affordances pro-
vided to a deer as opposed to a chipmunk by a downed tree, they are, in effect, characterizing ani-
mal-specific mental processes. The difference between the classical symbolic approach on the one
hand, and the ecological and connectionist approaches on the other, lies not in whether mental events
are accepted or rejected but in the qualities that are ascribed to them.

1998). In a later section (Simulations), I bring the learning algorithm back in and
reexamine it with the help of these bearing points. Encouragingly, the learning net-
works appear to converge on the types of encodings predicted by the dynamical au-
tomaton models. Moreover, there is a revealing alignment between symbolic and
dynamical computation hierarchies.

Dynamical Automata

A major feature of the syntactic structure of natural language is its nested structure:
There are many cases where a phrase occurs inside another phrase, including ones in
which the embedded phrase is of the same type as the dominating phrase recall (1).
To think clearly about nested sequence structures, it is helpful to design a simple ex-
ample. Consider a language, called Language 0, which has a prototype sentence in it
consisting of the words, a, b, c, and d in sequence. Suppose that after any word of Lan-
guage0, it ispossible to insertanembedded instanceof thisprototype sentence.Thus
a typical sentence would be something such as a b a b c d c a a b c d b c d d. Language 0
can be described by the context-free grammar shown in Table 1.

Table 1 describes a symbolic system for generating Language 0. A symbolic
system computes by putting symbols in memory registers and following symbolic
rules for manipulating the symbols. By contrast, a connectionist network com-
putes by adjusting the real-valued activations of its nodes. The relation between
the form of the symbolic symbols and the information they point to is arbitrary.
By contrast, a connectionist network computes in a metric space, where dis-
tances between states are defined, and nearby states predict similar behaviors;
thus, the form of the network’s encoding tends to bear a predictable relation to
its content.

How might a connectionist, metric-space computer be designed so it could
easily produce all and only the strings of Language 0? To keep track of the tem-
poral dependencies in Language 0, it is necessary to keep track of each point at
which an a b c d sequence was started but not finished. A symbolic machine uses
a stack for this purpose—a list of the incomplete embeddings that need to be
completed. Suppose this list uses the stack symbol A for an embedding under a;

SYMBOLIC COMPUTATION 31

TABLE 1
Grammar 0, Which Defines Language 0

S → A B C D A → a S B → b S C → c S D → d S
A → a B → b C → c D → d

Note. To generate a sentence, the grammar-interpreter starts with a rule of the form “S → …” and
stores, in a special staging area of its memory, the sequence of symbols to the right of the →. It then at-
tempts to replace each of these symbols following the rules of the grammar under the assumption that
the symbol “→” means “can be replaced by.” The process terminates whenever it reaches a point where
no more replacements can be made. The sequence that lies in the staging area at that point is the gener-
ated sentence.

B for an embedding under b; and so forth. Then, for Language 0, the set of all
possible stack states that can occur in the language is the set of all strings com-
posed of 0 or more As, Bs, and Cs (a D stack symbol is not needed because d al-
ways ends a phrase). This set is called {A, B, C}*. To keep track of stack states, a
metric-space computer needs to map each member of {A, B, C}* to a unique
point in the metric space.

Figure 2 shows one scheme for doing this in a two-unit neural network. The two
axes identify activation values of the two units. The points associated with stack
states are points in a fractal set called the Sierpinski triangle—note that each stack
state is at the midpoint of the hypotenuse of a triangle that is isomorphic to the
whole set. Of course, there are (uncountably infinitely) many ways to map the
members of {A, B, C}* to points in a connected metric space. The proposed way
translates naturally into a connectionist encoding because (a) the infinite set of
stack states lies in a bounded region—this helps because unit activations are
bounded; (b) states that are prominently different in a sensory sense (the state of
expecting b vs. the state of expecting c) are separable from one another by
straight-line boundaries or linearly separable (Minsky & Papert, 1969)—this helps
because sigmoidal activation functions approximate linear separators; and (c) the
larger scale shape of the trajectory associated with a particular phrase stays con-
stant across levels of embedding (e.g., a b c is always “lower right to lower left to up-
per left” in Figure 2)—this helps because the structure of the separators can be
used to make appropriate distinctions at all levels of embedding, provided the scal-
ing is appropriately normalized. Table 2 shows how to cash these benefits in a
connectionist encoding. The essence of the network is a two-element vector, �z,
corresponding to a position on the Sierpinski triangle (Barnsley, 1993). When �z is
in the subset of the plane specified in the Compartment column, the possible input

32 TABOR

FIGURE 2 A useful way of mapping stack states for Language 0 to neural activation states.

words are those shown in the Input column. Given a compartment and a legal in-
put for that compartment, the change in �z that results from reading the input is
shown in the State Change column. If we specify that the network must start with
�z=(½,½), make state changes according to the rules in Table 2 as symbols are read
from an input string, and return to �z=(½,½) (the Final Region) when the last sym-
bol is read, then the computer functions as a recognizer for the language of Gram-
mar 0—that is, the rules will bring it back to the starting point for all and only the
sentences of Language 0. To see this intuitively, note that any subsequence of the
form a b c d invokes the identity map on �z. Thus Dynamical Automaton 0 (DA 0) is
equivalent to the nested finite-state machine version of Grammar 0. I refer to Table
2 as a “connectionist encoding” because the formulas translate directly into an arti-
ficial neural implementation using standard connectionist devices (Tabor, 2000).
Tabor also shows that the method illustrated in this example is sufficiently general
that it can handle all nested phrase-structure dependencies.

Lyapunov Analysis

Having used representational conceptions to design dynamical systems (neural
networks) for processing phrase-structure languages, I wanted to see whether
self-organizing (learning) neural networks were, in fact, creating similar
encodings when faced with unbounded nesting languages. But because the net-
works need to work with a few more than two dimensions (otherwise learning
success is a long shot), it is not easy to compare dynamical automata to trained
neural-symbol processors simply by “looking at” their hidden unit encodings. A
tool is needed.

Lyapunov characteristic exponents (Abarbanel, 1996; Oseledec, 1968) are useful
for characterizing the complexity of dynamical processes (processes such as walking,
seeing, haptically exploring, or, in this case, understanding and producing language).
Many dynamical systems have attractors, or states, which the system tends toward
over time. Attractors can be single, static-system states (such as the hanging-
straight-downstateof apendulum).Theycanalsobedynamic—forexample, aneas-
ily sustained rhythmic gait in a walking organism. I suggest that familiar phrasal se-
quences (e.g., determiner-adjective-noun, noun_phrase-verb-noun_phrase, etc.) are
associated with trajectories on a dynamic attractor that underlies language process-
ing. There are two main classes of dynamic attractors: attractive limit cycles—
bounded dynamic sequences that repeat—and chaotic attractors—these are bound-

SYMBOLIC COMPUTATION 33

TABLE 2
Dynamical Automaton 0 (DA 0)

Compartment Input State Change

z1 > ½ and z2 < ½ b
� �

z z← − (½,)0
z1 < ½ and z2 < ½ c

� �

z z← + (, ½)0
z1 < ½ and z2 > ½ d

� �

z z← −2 0((, ½))
Any a

� �

z z← +½ (½,)0

ed like limit cycles but move around so wildly (and unpredictably) that they never re-
peat. Lyapunov exponents measure the average rate of contraction (or, equivalently,
divergence) of system states near the attractor of a dynamical system. In determinis-
tic dynamical systems, Lyapunov exponents can be used to classify an attractor as re-
peating or chaotic: The maximal Lyapunov exponent on a limit cycle is negative; the
maximal exponent on a chaotic attractor is positive. Thus, by measuring Lyapunov
exponents, one can discover qualitative distinctions between dynamical systems. I
suspect that natural languages have complexity such as that of chaotic attractors
(and thus positive Lyapunov exponents). One of the main points of this article is to
suggest that linguistic theory’s grammars are associated with dynamical systems that
have Lyapuonv exponents equal to 0. This puts them right on the border between re-
peating processes and unpredictable ones. Though linguistic processes probably do
not liverightontheborder,mysuspicionis thatthey livenear it,becausetheyshowalot
of similarity to the cases on the border. Thus, understanding how the cases on the bor-
der work may be a helpful step toward understanding how natural languages work.

The standard definition of Lyapunov exponents applies only to deterministic
dynamical systems. The Appendix describes an extension to symbol-driven sto-
chastic dynamical systems, which I used in discussing the following analyses. Under
this extended definition, dynamical automata that process context-free languages
have Lyapunov exponents equal to 0.

The next section reports measurements of Lyapunov exponents of self-organiz-
ing (learning) connectionist networks trained to generate languages defined by
symbolic processes. I tested the hypothesis that the learning networks trained on
phrasal-embedding languages would exhibit 0 Lyapunov exponents.

Zero Lyapunov exponents in connectionist networks trained on context-free
languages would be of interest for several reasons. First, they would indicate that
the self-organizing connectionist models develop the same fractal organization as
the preprogrammed dynamical automata, and thus that insight into the easily
understood dynamical automata can be extended to poorly understood
connectionist models. Second, they would indicate a correspondence between
an important dividing line in the realm of dynamical systems (zero Lyapunov ex-
ponents) and an important dividing line in the realm of symbolic computers (in-
finite-state Turing machines, which lie between finite-state machines and
nonrecursive devices). Third, the “edge of chaos” (where Lyapunov exponents
are 0) has been identified as important for living systems based on rather differ-
ent considerations. For example, Alexander and Globus (1996) argue that brains
have a recursive cellular organization that puts their dynamics on the edge of
chaos, and Kauffman (1993) argues that optimal biological evolution occurs
when systems are on the edge of chaos. The identification of a pervasive property
of natural language syntax as chaos proximal would suggest that language theory
might be incorporated into biology in a helpful new way and that linguistic anal-
ysis offers tools for understanding complex phenomena that might have applica-
tion in other sciences.

34 TABOR

SIMULATIONS

Which stack-based languages should be used to test the neural networks? Linguis-
tic research has identified several patterns in natural languages that motivate the
use of various kinds of stack memories. In this section, I introduce the training data
by describing some of that research.

Linguistic–Computational Guidance

The syntactic patterns of natural language come in dizzying variety. Chomsky
(1957) attempted to shine a beam on this feature of human-generated languages by
describing a series of increasingly powerful computing mechanisms, now referred to
as the Chomsky hierarchy (Table 3). About this series of devices, Chomsky posed the
question: Which is the least powerful device that can encode all the order-of-mor-
pheme patterns of each human language in the world?

A finite-state language is a set of element sequences that can be generated by a
computer, called a finite-state machine, which only occupies a finite number of
states. Each context-free language can be generated by a finite-state machine manip-
ulating an unbounded pushdown stack (i.e., a first-in, last-out memory). Each con-
text-sensitive language can be generated by a finite-state machine manipulating a
memory that can be accessed in any order, provided the amount of memory needed
by the device grows at most linearly with the length of the output. Each Turing lan-
guage can be generated by a finite-state machine coupled with an any-access-order
memory of unbounded (though still finite) size (Hopcroft & Ullman, 1979).

This hierarchy provides a kind of crude map, which is useful for navigating among
the syntactic patterns that occur in natural languages. I concur with Moore (1998)
that the Chomsky hierarchy is an imperfectly designed tool, and it will be useful to re-
place it with a better apparatus. I will discuss part of the case for this claim below, but
the hierarchy is not altogether useless, and it serves well for getting started.

Grammars

Counting. Chomsky (1957) argued for the need for (at least) stack-based
computation (above finite state on the hierarchy) on the basis of constructions
such as (6), where Si corresponds to some declarative sentence.

SYMBOLIC COMPUTATION 35

TABLE 3
The Formal Language Classes

of the Chomsky (1957) Hierarchy

Finite state Finite number of states
Context free Pushdown stack
Context sensitive Linear bounded tape
Turing machine Unbounded tape

(6) a. If S1 then S2.

b. If it is the case that if S1 then S2 then S3.

A less formalized example reveals that the structure, (6b) can be part of a nor-
mal-sounding sentence (7).

(7) If it is true that if we leave without telling Bunnie where we are going
then she will ransack the apartment when she returns, then I’d say let’s
wait until she gets back before we head out.

Simplification and generalization of (6), with substitution of shorter symbols for
longer yields (8).

(8) If separator if separator if … then S1 then … then Sk where the number
of ifs = the number of thens = k.

Assuming the content of the Sis is arbitrary (a case of the simplifying con-
text-freeness assumption), the embedding structure of this form is isomorphic to
the embedding structure of the language {anbn : n ∈ {1, 2, 3, … }} (i.e., the set of
strings consisting of 1 or more as followed by the same number of bs). As Rodriguez
(2001) noted, a symbolic stack for generating this language functions simply as a
counter—it counts the number of as and remembers the count in order to deter-
mine how many bs to generate. This “counting language” is, in some sense, the sim-
plest non-finite-state language. I chose it as the basis for the first network simula-
tion. To design a generator with an embedding distribution similar to that of
natural language, I used the probabilized version of anbn shown in Row Sl of Table 4.
In this language, sentences of embedding level i occur half as often as sentences of
embedding level i – 1.

Palindromic. Typically, languages do not repeat the same elements over and
over in the same sentence (as in the language anbn just discussed). But on an ab-
stract level, they use the same patterns over and over again, sometimes in rather
elaborately nested configurations. For example, the transitive clause pattern
(subj-verb-object) appears repeatedly in (9).

(9) The realization1-subj that someone2-Subj/3-Obj she3-Subj had known3-Verb

well but had not seen3-Verb for over twenty years was about to walk2-Verb

into the room filled1-Verb Tial-obj with a kind of delicious dread.

Many subject–noun phrases can combine felicitously with a limited class of
verbs. Simplifying considerably, we can approximate the dependencies with a list of
preferred sequences (10).

36 TABOR

(10) N1 V1

N2 V2

The nesting then creates patterns such as (11).

(11) N2 N1 V1 V2

N2 N2 V2 V2

N1 N2 N2 V2 V2 V1

etc.

which, taken all ways, define the language WW′, where each W is a sequence of
one or more N1s and N2s, and each W′is the corresponding reversed sequence of
V1s and V2s (see Row S2 of Table 4). This language is a type of palindrome language.
In the realm of symbolic devices, a pushdown stack is the minimal device that is
needed to keep track of the dependencies in this language. For the second simula-
tion, I used a pushdown automaton to generate strings from the palindrome lan-
guage. The probability of embedding was again equal to .5 wherever embedding
was possible.

Interleaving. Harman (1963), perhaps inspired by the ubiquity of nested
dependencies in English and other languages, promoted the thesis that a restric-
tive theory of grammar should use only (context-free) phrase-structure grammars
for syntactic representation (see also Pullum & Gazdar, 1982). Claims such as his
prompted linguists to search the languages of the world for patterns that could
not be handled by context-free rules. In fact, several cases turned up, most of
them involving structures along the lines of the Dutch sentence (12)

SYMBOLIC COMPUTATION 37

TABLE 4
Infinite State Symbol-Generating Grammars

Grammar Number Name Definition

S1 Counting S → S1 p
S1 → a (S1) b

S2 Palindromic S → S1 p
S1 → S11/S12
S11 → a (S1) b
S12 → (S1) y

S3 Interleaving S → Wiwip
Wi → {n1, n2}*
wi is hom (Wi)a

Note. A constituent in parentheses is present in half the instances and absent in the other half.
Two or more constituents with slashes (/) between them split the instances equally among them. In Lan-
guage S3, the probability of generating a string of length 2k + 1 was 1/2k. The symbol p is an end-of-sen-
tence marker.

ahom (Wi) replaces n1 with v1 and replaces n2 with v2.

(Huybregts, 1976; example taken from Bresnan, Kaplan, Peters, & Zaenen,
1982; see also Savitch, 1987).

(12) … dat Jan Piet Marie de kinderen zag helpen laten zwemmen
… that Jan Piet Marie the children saw help make swim
… that Jan saw Piet help Marie make the children swim.

The subject–verb correlations in this sentence have the interleaved structure
shown in (13).

(13)

Again, approximating the informational dependencies with constraints on the
sequencing of types, we consider the language WW′ where W is a sequence of
nouns chosen from {N1N2} and W′ is the corresponding sequence of verbs with
the verbs in the same order as the nouns. I refer to this language as an interleaving
language. A simple interleaving language with two types of Ns and two types of Vs is
listed on Row S3 of Table 4.

The existence of crossed-serial dependencies in Dutch and other languages
was originally interpreted as evidence that natural languages lie higher on the
Chomsky hierarchy than the context-free level. Following Moore (1998), I sug-
gest a different interpretation: The Chomsky hierarchy is an imperfect frame-
work. The simplest symbolic device that can keep track of the dependencies in
an interleaving language is a queue automaton, which uses a first-in, first-out
stack. The difference between pushdown stacks and queues is not a computa-
tional power difference but a difference in the kind of computational device in-
volved. The fact that natural languages exhibit both kinds of structure is evi-
dence that the theory of language needs to cut in at a more fundamental level.
One response (not insightful) would be to list both stacks and queues in the ar-
ray of devices available for the learners of natural languages to choose from when
they set up a grammar. A better response, I suggest, is to define a more general
computational framework and to let structure, in the sense of stacks and queues,
develop emergently, in response to experience with the data. The following re-
sults indicate that the class of connectionist networks studied here constitutes
such a framework.

Control Cases

The dynamical automaton hypothesis predicts that if a neural network learns any
language that can be efficiently characterized with a stack mechanism (either

38 TABOR

pushdown or queuelike), then the maximal Lyapunov exponent of the induced sto-
chastic process should approximate 0. Because a learning network only converges
on a perfect stack emulator in the limit (and is also limited by the precision of its
implementation), measurements will produce values near 0, but not exactly 0.
Thus, to test the dynamical automaton hypothesis, it is useful to construct a set of
control cases against which quantitative comparisons can be made. When should
the maximal exponent not be 0? If the learning algorithm functions conservatively
in the sense that it does not build an emergent device more complex than it needs
to for the task at hand, then all finite-state processes should lead to negative maxi-
mal exponents. Likewise, memoryless infinite-state processes should lead to nega-
tive maximal exponents. I examined a variety of such control cases.

Finite, memoryless. Within the finite-state languages, there is an even
smaller class of languages that Chomsky did not include as a separate entry in his
hierarchy—the finite languages. The sentences of a finite language can be listed in a
finite-length list. For the first control case, I trained a network on the finite lan-
guage consisting of the single sentence a b c (repeated over and over again through-
out the training process; see Language Cl of Table 5).

Finite with memory. Crudely speaking, the difference between the finite-
state and infinite-state languages on the Chomsky hierarchy is the inclusion of
memory. But the memory of a stack or tape is a special kind of memory because its
size is unbounded. There are many finite languages and finite-state languages that
require the use of a memory too, a finite-length memory. One may wonder whether
the presence of any correlational structure that requires the use of memory will in-
duce a zero Lyapunov exponent. To address this question, I included a control net-

SYMBOLIC COMPUTATION 39

TABLE 5
Finite-State Symbol Generating Grammars

Cl Finite, memoryless S → a b c
C2 Finite with memory S → a b a c
C3 Infinite-state, memoryless S → a (P1/P2) p

P1 → a1 (P11/P12)
P2 → a2 (P21/P22)
P11 → a11 (P111/P112)
P12 → a12 (P121/P122)
P21 → a21 (P211/P212)
P22 → a22 (P221/P222)
…

C4 Finite-state with memory S → (NP) v (NP) p
NP → n (NP)

Note. A constituent in parentheses is present in half the instances and absent in the other half.
Two or more constituents with slashes (/) between them split the instances equally among them. The
symbol p is an end-of-sentence marker.

work that was trained on the language consisting of the sentence a b a c (Language
C2 in Table 5). In order to distinguish between the b and c events, the processor
needs to remember the event preceding each a while simultaneously attending to
the current symbol—a simple, finite-memory task.

Infinite-state, memoryless. It is also possible to define an infinite-state
language that requires no memory if one employs an infinite alphabet of symbols.
Language C3 in Table 5 is such a language. This language has the structure of a set
of lineages read randomly off an infinite-depth taxonomic tree starting at the root,
with truncation probability always equal to .5. This language provides a valuable
comparison to the palindrome language and the interleaving language because in
all three cases, there is a hyperbolic (Zipf’s law) relation between each state’s fre-
quency and its frequency rank (Zipf, 1949). One might, a priori, expect such 1/f
structure in the frequency distribution to be associated with a chaotic or
edge-of-chaos dynamical process. But because memory is not involved, the dynam-
ical automaton hypothesis predicts limit-cycle dynamics and hence a negative
maximal Lyapunov exponent.

Finite-state with memory. Early in the history of psycholinguistics, it was
noted that probabilistic finite-state machines (also called finite-state Markov
models) can provide good approximations of natural languages (Osgood & Se-
beok, 1954). As control Language C4 (Table 5), I included the output of one such
device, inspired by English compound noun and clause structure. This language
contains infinite-length sentences and requires information to be stored over un-
bounded time, but it only requires a finite number of states.

For all four of these control cases, the dynamical automaton hypothesis predicts
limit-cycle dynamics and, hence, negative maximal Lyapunov exponents in the
network solution.

Results

The simulations were run with the simulator Lens (Rohde, 2001). Each network
was trained for 3,000,000 pattern presentations with learning rate 0.0001. The
simulations used “Doug’s momentum” (value 0.9), a method of avoiding overly
radical adjustment of weights when the cost function is steep. The root mean
squared error (RMSE) at the end of training for each type of network (computed
with respect to the grammar-derived probabilities on an appropriate test corpus of
200 random sentences in each case) are shown in the column labeled RMSE in Ta-
ble 6. Root mean squared error is the standard error measure reported in neu-
ral-network studies—it gives an approximate sense of how the network performed
quantitatively with respect to the cost function it was trying to minimize, but it
does not give a very good sense of the qualitative character of the results in cases
such as the ones at hand where correctness on specific structures is important. To

40 TABOR

address qualitative performance, a particular word-to-word transition was defined
as “correctly processed” if the vector of network activations on that transition was
closer to the correct grammar-derived probability vector than it was to any other
grammar-derived probability vector (Tabor & Tanenhaus, 1999). At the end of
training, each network that processed embedded structures processed at least 69%
of the transitions in doubly embedded sentences correctly, 88% of the transitions
in singly embedded sentences correctly, and 98% of the transitions in matrix sen-
tences correctly in a sample of 200 sentences, although performance was much
better on the simplest case, anbn (> 99.3% of all transitions correct down to 6 levels
of embedding). Each network that processed data from the taxonomic grammar
processed all sentences at least 4 words long correctly in a sample of 200 random
sentences. Each finite-state-trained network processed all transitions correctly in a
sample of 200 random sentences. The superior results for matrix sentences and fi-
nite-state grammars may reflect the finite-state bias of the random-initial state of
each network noted by Christiansen and Chater (1999) and Ti�o, �er�ansk�, and
Be�u�kov� (2001). I note below, however, that at least in the case where the net-
work did well on an infinite-state language (anbn), the network cum learning algo-
rithm may have an infinite-state bias.

Table 6 shows the average maximal Lyapunov exponent for each type of net-
work. An analysis of variance (ANOVA) with language environment as random
factor indicated that the maximal exponents were less negative for the set of
stack-trained networks than for the set of non-stack-trained networks, F(l, 5) =
15.66, p = .011. This result is encouragingly consistent with the dynamical autom-
aton hypothesis. A second analysis showed that the maximal exponents for just the
stack-trained networks were significantly less than 0. This result was expected be-
cause the networks appear to approximate infinite-state computation by building
progressively more complex limit-cycle machines over the course of training. The
limit cycles lead one to expect negative exponents; only in the limit of infinite
training should the maximal exponent actually equal 0.

SYMBOLIC COMPUTATION 41

TABLE 6
RMSE and Maximal Lyapunov Exponents

for the Net, Organized by Training Grammar

Label Grammar RMSE
Standard
(RMSE)

Stack
Memory?

Maximal
Exponent SD

S1 Counting 0.05 0.02 Yes –0.32 0.10
S2 Palindromic 0.15 0.01 Yes –0.31 0.20
S3 Interleaving 0.14 0.01 Yes –0.22 0.09
C1 Finite 0.00014 0.0000039 No –1.88 0.21
C2 Finite with memory 0.00029 0.000091 No –1.44 0.24
C3 Infinite-state, memoryless 0.03 0.01 No –1.74 0.19
C4 Finite-state with memory 0.013 0.003 No –0.75 0.23

Note. RMSE = root mean squared error.

Structuralism and Causality

A related result sheds some new light on the discussion about the relation between
discrete (or “symbolic”) and dynamical computation. Carello et al. (1984) argued
against a dualist treatment of these types (e.g., as advocated by Pattee, 1982) and
stated that under their “strategy of elaborating continuous dynamics, the so-called
discrete mode would be relieved of an explanatory role and relegated to the status
of just one way (out of several or many ways) that a complex system might behave”
(p. 237).

“One way out of several” is an accurate description of the status of the discrete
mode in the models at hand. The implementation of stacklike computation in the
recurrent network, a dynamical computer, depends on the creation of a precise bal-
ance in the timing of the model’s habitation of expansive and contractive regions of
the hidden unit manifold. Tabor (2000) showed that in one parameterizable dy-
namical automaton, the cases of context-free computation (one kind of dis-
crete-mode computation) are rare atolls in a wide sea of non-context-free behav-
ior. Countability considerations indicate that these non-context-free behaviors
must consist mostly of super Turing processes, that is, they are outside the realm of
the discrete mode.

When Carello et al. (1984) talked of relieving the discrete mode of its “explana-
tory role,” I interpret them as rejecting the structuralist habit of discovering a pat-
tern in a domain and describing a characterization of the pattern as an explanation.
One wants to know why the pattern is there in a more ultimate sense. The present
work attempts to probe more ultimate causes by examining language learning (in-
ductive lawfulness). But one particular behavior of the learning mechanism at
hand adds an interesting twist to the debate about the explanatory relevance of
symbolic models: Tabor (2001) asked, How do networks such as those described
above generalize when they are trained on just the most frequent sentences of one
of the infinite-state probabilistic languages examined above? This question is a way
of asking how the network goes beyond its input. The answer is that it shows a clear
bias toward the infinite-state process from which the finite approximations were
derived, even to the point of distorting its approximation of situations it has reli-
able experience with.

In Tabor (2001), I trained the network on the output of a series of finite-state
grammars derived from the counting grammar mentioned previously. The first
grammar just had the sentence a b; the second had, in addition, a a b b; the third
added a a a b b b, and so forth. The probabilities of the sentences were the same as
they were for the infinite-state counting language described above, except that the
most deeply embedded sentence had twice the probability of its counterpart in the
counting language and there was no possibility of continuing on after the last a.

I trained networks such as those described above on this succession of grammars
(200,000 words presented from each). I compared the performance of the network
after each stage of training to the performance of a variable-length Markov model
(VLMM; Ron, Singer, & Tishby, 1996) trained on the same data. VLMMs work on

42 TABOR

a simple principle: Predict the future by finding the longest identical past to the
past of the current state; if there are multiple longest identical pasts, take their
mean as the current prediction.3 VLMMs are among the best finite-state methods
of approximating natural language phenomena (Guyon & Pereira, 1995). Thus,
comparing the network’s performance to that of the VLMM provided a way of ask-
ing how the network tended to diverge from optimal finite-state behavior.

I tested the network and the VLMM on their predictions about new sentences
with greater levels of embedding than those included in each training grammar. I
used the infinite-state process as a standard. For all novel sentences, the network
diverged from the VLMM in the direction of the infinite-state process: Its error
with respect to the behavior of the infinite-state process was substantially lower
than the error of the VLMM with respect to the same process (Figure 3). In fact, it
even showed an infinite-statelike response to the most deeply embedded observed
sentence, even though the training data provided a statistically reliable signal indi-
cating finiteness—Figure 3. Tabor (2001) takes this result as suggesting that the in-
finite-state process may be a kind of attractor for the neural network: It tends to
gravitate to it, even when the input only approximates it.

The possibility that the simple, context-free grammar anbn is an attractor of the
learning process has particular relevance to the question of causes. Imagine a flock
of neural networks, such as these, providing the training signals for “younger” neu-
ral networks that are trying to learn the “language of their community.” If a partic-
ular grammar is an attractor in this sense, then it is plausible that the community
would migrate toward that grammar across the generations. Such a model is, to be
sure, rather unreal, because it is disembodied: There is no world that the language
refers to; thus, for example, the language does not have a communicative function
with respect to such a world. But it is not implausible that if extra linguistic refer-
ence were brought into the picture and it was useful to use context-free (or inter-
leaved) embedded structures to describe the world at hand, then a lineage of net-
work talkers such as these, with stacklike mental attractors, might well converge
on one or another of the attractors over time. In this sense, the current model looks
helpful for probing causes.

Thus, the simple infinite-state systems that symbolic theories have identified
as structurally relevant may also turn out to be relevant to a theory of the causes
of the nature of language organization. To be sure, just identifying these states as
important, as discrete-mode theorizing has done, is not adequate for understand-
ing the causality involved. But it may be a helpful first step. The present study
suggests that learning neural-network models may be able to take this develop-
ment a step further.

SYMBOLIC COMPUTATION 43

3In natural language modeling work using real corpora, exhaustive exploration of identical paths is
not feasible and so approximation methods are needed. In such contexts, VLMMs are thus associated
with a specific strategy for employing long histories only where they help (Guyon & Pereira, 1995; Ron
et al., 1996). Because the present study involves simpler, artificial languages, maximal matching con-
texts and their associated probabilities can be computed accurately in all cases, so no truncation is used.

44
TA

B
O

R

FIGURE 3 Generalization behavior of the anbn model when it is trained on successively longer strings. Subgraph i corresponds to training grammar with sen-
tences with embedding level 1 … i for each i. Each subgraph is stratified into 10 levels of embedding (x axis). The curves marked 0 show the average
Kullback–Leibler divergence per word between the VLMM and the infinite-state process. The curves marked X show the average divergence per word be-
tween the network and the infinite-state process. The shaded regions indicate the depths of embedding on which the network and VLMM were trained.

CONCLUSIONS

In a nutshell, this article has developed the following argument: Generative lin-
guistic models of sentence-level structure in natural languages have several prop-
erties that ecological psychologists have rightly criticized in representationalist
models in general: staticness, context-freeness, and lack of a lawful basis. Con-
nectionist learning models offer an alternative that is more dynamic, desirably
context sensitive, and explicit about the laws relating the organism’s state to its
environment. But it has not been clear how the connectionist learning devices
can handle the complex temporal patterns that characterize natural language
syntax. For this problem, representationalist mechanisms are manifestly useful.
In earlier work (Tabor, 2000), I described a method (dynamical automata–fractal
grammars) of translating the principles of their successes into the encoding
framework in which connectionist models operate. The present study tested
connectionist learning of complex, languagelike processes to see if they shared an
important feature with the dynamical automata for such languages—zero
Lyapunov exponents, or balance between habitation of contractive and expan-
sive regions. Indeed, the results suggest that the learning connectionist models
converge on representation with the same kind of fractal organization as the cor-
responding dynamical automata. Moreover, under similar learning conditions,
Tabor (2001) found evidence suggesting that the infinite-state fractal computers
are attractors of the learning system.

These results suggest a potentially insightful way of aligning discrete and dy-
namical computation. Limit cycles correspond to finite-state devices. Edge-of-
chaos processes correspond to stack-based mechanisms. The fact that a Turing ma-
chine can be built with three stacks suggests that all recursively enumerable com-
putations may lie on the edge of chaos in the current sense. I speculate that chaotic
processes correspond to so-called super-Turing computation (Siegelmann, 1999).
The results thus locate one of the core entities of discrete computation (stack
mechanisms) at the heart of dynamical computation as well. This insight shows
promise of helping us figure out how to understand connectionist learning of the
complex dependencies of natural language syntax. For example, one of the first
insightful analyses of connectionist learning of complex languages, Rodriguez
(2001), succeeds by training networks and then building similar dynamical autom-
ata. If, as Tabor (2001) suggests, the stack-based computers are attractors of the dy-
namical learning mechanism, then they may also play a central role in understand-
ing what causes languages to be organized into constituent structures.

The value, then, of symbolic, representationalist objects, is that they provide
important bearing points for exploring complex dynamical learning systems, a psy-
chologically appealing class of models. They are not by themselves, as the orthodox
theories hold, good models of human mental states. The problem is that if one re-
stricts one’s ontological prospect to just the bearing points, then one is helpless
when it comes to navigation in the surrounding space. Such navigation is very

SYMBOLIC COMPUTATION 45

helpful for addressing inductive lawfulness, as the connectionist models demon-
strate. But having some bearing points for the navigation is also a good thing.

In the introduction, I characterized a lawful theory, for present purposes, as one
that provides a complete and coherent account of how mental states and environ-
ments coevolve at the timescale of moment-to-moment experience. When lawful-
ness is the topic, ecological psychologists are inclined to emphasize “specifica-
tional” lawfulness—illustrated, for example, by the relation between a physical
situation and the optic flow pattern that it produces (Turvey & Carello, 1985).
Specificational lawfulness contrasts with “indicational” lawfulness, which charac-
terizes, among other things, the relation between a linguistic symbol and the mean-
ing to which it is conventionally linked. If one assumes that linguistic objects (by
which I mean actually occurring phonemes, morphemes, phrases, etc.) are to be
treated as symbols and are thus of a fundamentally different ilk from other objects
in the world (e.g., sidewalks, doors, and chairs), then it would appear that
indicational lawfulness is fundamentally different from specificational lawfulness.
Indeed, linguistic understanding seems, on initial observation, to require a differ-
ent kind of computation from the kind that works well for detecting kinematically
relevant invariants in rays of light. But what the connectionist models discussed
here suggest is that linguistic understanding may not operate so differently after all.
At the basic level, it may depend on the same necessity of establishing invariants
that support effective action. It may require the same enfolded organization of met-
ric-space computation, rather than the disconnected memory structure of Turing
machines. The suggested similarity is supported by the fact that connectionist
models operating on very similar principles to the ones described here have been
used successfully to characterize nonlinguistic visual, olfactory, and auditory do-
mains that appear to involve specification in the classical Gibsonian sense (Arbib,
1995). Convention seems strange in comparison to something from classical phys-
ics (e.g., gravity) because of the prominent role of arbitrariness. But it seems less
strange in comparison to biological variety (Millikan, 2001), and there are good
reasons to believe that biological variety is founded on a specificational relation be-
tween each organism’s environment and its nature (Thompson, 1917/1992). The
prominence of linguistic arbitrariness may reflect the fact that we live on such inti-
mate terms with linguistic conventions. The shift of the focus from language pro-
cessing to language induction makes the conventional features less distracting be-
cause they become small bits of material that form the substance of a larger,
law-governed whole.

I conclude with four ideas:

• It might be helpful to study connectionist models of phenomena, such as
haptic perception, dynamic touch, locomotion, and so forth, in order to situate
these in the computational (as well as the dynamical) framework outlined here.

• Representationalist entities might play a useful role in the ecological study of
nonlinguistic perception if they were viewed as conceptual bearing points rather

46 TABOR

than as sufficient models of the phenomena. For example, perhaps there are
learned schemata of limb movement that could so serve.

• The notion that symbolic objects might be attractors of mental dynamics sug-
gests a new species of observer’s paradox: Why are representationalist models so
appealing to many researchers? Perhaps the conceptions they identify are familiar
because our mental states are likely to spend time near them. Why is it hard to ex-
amine the bigger picture, even when we can model it? Perhaps it is because the
nonsymbolic states are mental transients that we experience only fleetingly.

• Symbolic objects as attractors do, I believe, help probe the question of causal-
ity, but they also raise an interesting question about the proper approach to expla-
nation from an ecological perspective: Are the stable states there because they af-
ford us a selective advantage in the world (e.g., fractal language is useful for talking
about the recursive structure of nature)? Or are they there because our minds and
the world are traveling in a kind of abstract, information-theoretic reality, and the
observed topologies are the (objective) nature of that reality? The notion of uni-
versal “laws of information” favors the latter view.

ACKNOWLEDGMENTS

This research was partly supported by University of Connecticut Research Founda-
tion Grant FRS 444038. Thanks to Chaopeng Zhou for discussions and help with
running the simulations. Many thanks to Carol Fowler, Claire Michaels, William
Mace, and Guy van Orden for helpful feedback on earlier drafts of this article.

REFERENCES

Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. New York: Springer-Verlag.
Alexander, D. M., & Globus, G. G. (1996). Edge-of-chaos dynamics in recursively organized neural sys-

tems. In E. MacCormac & M. I. Stamenov (Eds.), Fractals of brain, fractals of mind: In search of a sym-
metry bond (pp. 31–73). Amsterdam: Benjamins.

Arbib, M. A. (1995). The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.
Barnsley, M. (1993). Fractals everywhere (2nd ed.). Boston: Academic.
Bresnan, J. (1982). The mental representation of grammatical relations. Cambridge, MA: MIT Press.
Bresnan, J., Kaplan, R. M., Peters, S., & Zaenen, A. (1982). Cross-serial dependencies in Dutch. Lin-

guistic Inquiry, 13, 613–635.
Carello, C., Turvey, M. T., Kugler, P. N., & Shaw, R. E. (1984). Inadequacies of the computer metaphor.

In M. S. Gazzaniga (Ed.), Handbook of cognitive neuroscience (pp. 229–248). New York: Plenum.
Charniak, E. (1993). Statistical language learning. Cambridge, MA: MIT Press.
Chomsky, N. (1957). Syntactic structures. The Hague, The Netherlands: Mouton.
Chomsky, N. (1981). Lectures on government and binding. Dordrecht, The Netherlands: Foris.
Christiansen, M. H. (1994). Connectionism, learning, and linguistic structure. Unpublished doctoral disser-

tation, Department of Linguistics, University of Edinburgh, Scotland.
Christiansen, M. H., & Chater, N. (1999). Toward a connectionist model of recursion in human linguis-

tic performance. Cognitive Science, 23, 157–205.

SYMBOLIC COMPUTATION 47

Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics, and induction. Physica D,
75, 11–54.

Dennett, D. C. (1978). Brainstorms: Philosophical essays on mind and psychology. Cambridge, MA: MIT
Press.

Elman, J. (1990). Finding structure in time. Cognitive Science, 74, 179–211.
Elman, J. (1991). Distributed representations, simple recurrent networks, and grammatical structure.

Machine Learning, 7, 195–225.
Elman, J. (1995). Language as a dynamical system. In R. Port & T. van Gelder (Eds.), Mind as motion: Ex-

plorations in the dynamics of cognition. Cambridge, MA: MIT Press.
Frege, C. (1952). On sense and reference. In P. T. Geach & M. Black (Eds.), The philosophical writings of

Gottlob Frege (pp. 56–78). Oxford, England: Basil Blackwell. (Original work published 1892)
Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68, 1–76.
Gibson, E., & Wexler, K. (1994). Triggers. Linguistic Inquiry, 25, 407–454.
Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associ-

ates, Inc. (Original work published 1979)
Guyon, I., & Pereira, F. (1995). Design of a linguistic postprocessor using variable memory length

Markov models. In International Conference on Document Analysis and Recognition (pp. 454–457).
Montreal, Quebec, Canada: IEEE Computer Society Press. (Available at www.clopinet.com/isabelle/
Papers/index.html)

Harman, C. H. (1963). Generative grammars without transformational rules. Language, 39, 597–616.
Haykin, S. S. (1994). Neural networks: A comprehensive foundation. New York: Macmillan.
Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation. Redwood

City, CA: Addison-Wesley.
Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages, and computation.

Menlo Park, CA: Addison-Wesley.
Huybregts, M. A. C. (1976). Overlapping dependencies in Dutch. Utrecht Working Papers in Linguistics,

1, 24–65.
Hyams, N. M. (1986). Language acquisition and the theory of parameters. Dordrecht, The Netherlands:

Reidel.
Joshi, A. K., & Schabes, Y. (1996). Tree-adjoining grammars. In C. Rosenbeerg & A. Salomaa (Eds.),

Handbook of formal languages (Vol. 3, pp. 69–123). New York: Springer-Verlag.
Kamp, H., & Reyle, U. (1993). From discourse to logic: Introduction to model-theoretic semantics of natural

language, formal logic, and discourse representation theory. Dordrecht, The Netherlands: Kluwer Aca-
demic.

Kauffman, S. (1993). The origins of order: Self-organization and selection in evolution. Oxford, England:
Oxford University Press.

Lasnik, H. (1990). Essays on restrictiveness and learnability. Dordrecht, The Netherlands: Kluwer
Academic.

Millikan, R. G. (2001). Purposes and cross-purposes: On the evolution of languages and language. Unpub-
lished manuscript, Department of Philosophy, University of Connecticut.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.
Montague, R. (1974). English as a formal language. In R. H. Thomason (Ed.), Formal philosophy: Se-

lected papers of Richard Montague (pp. 108–221). New Haven, CT: Yale University Press. (Original
work published 1970)

Moore, C. (1998). Dynamical recognizers: Real-time language recognition by analog computers. Theo-
retical Computer Science, 201, 99–136.

O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience. Cambridge,
MA: MIT Press.

Oseledec, V. I. (1968). A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynami-
cal systems. Trudy Moskovskogo Matematicheskogo Obshchestva, 19, 197.

48 TABOR

Osgood, C., & Sebeok, T. (1954). Psycholinguistics: A survey of theory and research problems. Journal
of Abnormal and Social Psychology, 49(4, Pt. 2), 1–203.

Pattee, H. H. (1982). The need for complementarity in models of cognitive behaviors: Response to
Carol Fowler and Michael Turvey. In W. Weimer & D. Palermo (Eds.), Cognition and the symbolic pro-
cesses (Vol. 2). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Pollard, C., & Sag, I. A. (1994). Head-driven phrase structure grammar. Chicago: University of Chicago
Press.

Pullum, G. K., & Gazdar, G. (1982). Natural languages and context free languages. Linguistics and Phi-
losophy, 4, 471–504.

Rodriguez, P. (2001). Simple recurrent networks learn context-free and context-sensitive languages by
counting. Neural Computation, 13, 2093–2118.

Rohde, D. (2001). Lens, the light, efficient network simulator [Computer software]. Retrieved from
http://www.cs.cmu.edu/dr/Lens/

Rohde, D., & Plaut, D. (1999). Language acquisition in the absence of explicit negative evidence: How
important is starting small? Journal of Memory and Language, 72, 67–109.

Ron, D., Singer, Y., & Tishby, N. (1996). The power of amnesia: Learning probabilistic automata with
variable memory length. Machine Learning, 25, 117–149.

Rumelhart, D., Durbin, R., Golden, R., & Chauvin, Y. (1995). Backpropagation: The basic theory. In Y.
Chauvin & D. Rumelhart (Eds.), Backpropagation: Theory, architectures, and applications (pp. 1–34).
Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Rumelhart, D. E., McClelland, J. L., & PDP Research Group. (1986). Parallel distributed processing: Ex-
plorations in the microstructure of cognition (Vol. 1). Cambridge, MA: MIT Press.

Savitch, W. J. (Ed.). (1987). The formal complexity of natural language. Norwell, MA: Kluwer.
Servan-Schreiber, D., Cleeremans, A., & McClelland, J. L. (1991). Graded state machines: The repre-

sentation of temporal contingencies in simple recurrent networks. Machine Learning, 7, 161–193.
Siegelmann, H. T. (1999). Neural networks and analog computation: Beyond the Turing limit. Boston:

Birkhäuser.
Tabor, W. (1994). Syntactic innovation: A connectionist model. Dissertation Abstracts International,

55(01), 3178A.
Tabor, W. (2000). Fractal encoding of context-free grammars in connectionist networks. Expert Systems:

The International Journal of Knowledge Engineering and Neural Networks, 17, 41–56.
Tabor, W. (2001). Lyapunov characteristic exponents of discrete stochastic neural networks. Unpublished

manuscript, University of Connecticut.
Tabor, W., Juliano, C., & Tanenhaus, M. (1997). Parsing in a dynamical system: An attractor-based ac-

count of the interaction of lexical and structural constraints in sentence processing. Language and
Cognitive Processes, 12, 211–271.

Tabor, W., & Tanenhaus, M. K. (1999). Dynamical models of sentence processing. Cognitive Science, 23,
491–515.

Tanenhaus, M., Carlson, G., & Trueswell, J. (1989). The role of thematic structures in interpretation
and parsing. Language and Cognitive Processes, 4, S1211–S1234.

Thompson, D. W. (1992). On growth and form. New York: Dover. (Original work published 1917)
Ti�o, P., �er�ansk�, M., & Be�u�kov�, L. (2001). Markovian architectural bias of recurrent neural net-

works. Unpublished manuscript, Neural Computing Research Group, Aston University, Birming-
ham, England.

Turvey, M. T., & Carello, C. (1981). Cognition: The view from ecological realism. Cognition, 10,
313–321.

Turvey, M. T., & Carello, C. (1985). The equation of information and meaning from the perspectives of
situation semantics and Gibson’s ecological realism. Linguistics and Philosophy, 8, 81–90.

van Eijck, J., & Kamp, H. (1996). Representing discourse in context. In J. van Benthem & A. T. Meulen
(Eds.), Handbook of logic and linguistics (pp. 179–237). Oxford, England: Elsevier.

SYMBOLIC COMPUTATION 49

Von Bremmen, H., Udwadia, F. E., & Proskurowski, W. (1997). An efficient method for the computa-
tion of Lyapunov numbers in dynamical systems. Physica D, 110, 1–16.

Wolf, A., Swift, J., Swinney, H., & Vastano, J. (1985). Determining Lyapunov exponents from a time se-
ries. Physica D, 16, 285–317.

Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Cam-
bridge, MA: Addison-Wesley.

APPENDIX:
LYAPUNOV EXPONENTS FOR SYMBOL-DRIVEN

STOCHASTIC DYNAMICAL SYSTEMS

Let

be a discrete, deterministic dynamical system with n dimensional state, �x. The
Lyapunov exponents, λi for i = 1, … , n, of the trajectory starting at �x are the loga-
rithms of the eigenvalues of the matrix

where T denotes transpose, Df(�x) is the Jacobian of f at �x and

For �x in the basin of a single attractor, the values of the eigenvalues are essentially
independent of the choice of �x so we may speak of the Lyapunov exponents of the
attractor. From another perspective, the ith eigenvalue measures the average rate
of growth of the ith principle axis of infinitesimal ellipses surrounding points on the
attractor (Wolf, Swift, Swinney, & Vastano, 1985). The sum of the Lyapunov expo-
nents indicates the global stability of the system: The sum must be negative for the
system to have Lyapunov stability. If all the exponents are negative, then the sys-
tem is a limit cycle and visits only finitely many points. If at least one exponent is
positive (and the sum is negative), then the system is chaotic. The case in which
the greatest Lyapunov exponent is 0 in a discrete system is a special case that can
yield complex behavior (famously for the logistic map at the “edge of chaos”;
Crutchfield, 1994).

Definition (A2) can be extended to symbol-driven stochastic dynamical sys-
tems (such as the neural networks discussed previously) as follows: Because of the
nondeterminicity, we have to let the definition of eigenvalues depend not only on

50 TABOR

1
2() lim() ()) () (2)T tt t

t
OSL x Df Df x A

��
�

� �

1 1() [... ()] () () ... () (3)t t t tDf x D f f f x Df x Df x Df x A� �� � � � �
� � � � �

� � �

1 1() (1)t tx f x A� ��
� �

the initial condition but also on the specific random sequence of inputs, S, which
the autonomously functioning network chooses:

In Tabor (2001), I provide simulation evidence that this particular extension of
the definition of Lyapunov exponents to stochastic systems is useful in the sense
that the logarithms of the eigenvalues of this matrix are constants for almost all �x
and corresponding sequences S. In other words, the generalized Lyapunov expo-
nents defined by (A4) and the standard Lyapunov exponents defined for determin-
istic systems are invariants with respect to the same types of sets. This suggests that
they provide a stable characterization of the stochastic system’s expansion and con-
traction behavior. Encouraged by such results, I use these measures here as a way of
characterizing and comparing various stochastic dynamical systems (dynamical au-
tomata and learning neural networks). I conjecture also that the Lyapunov expo-
nents of the stochastic dynamical systems provide analogous classificatory informa-
tion about dynamical regimes of the stochastic systems, as the Lyapunov exponents
of the deterministic systems provide for deterministic systems For example,
negative exponents indicate limit cycles; a negative sum of exponents indicates a
dissipative system; positive exponents in a dissipative system indicate chaos, and so
forth (see Abarbanel, 1996).

In the case of pushdown dynamical automata such as DA 0 above, the charac-
teristic exponents can be calculated exactly. If DA 0 starts at �z = (½,½), then every
trajectory produces a string with an equal number of as, bs, cs, and ds. The Jacobian

for the b and c transitions is I, the identity matrix. For the a transitions, it is
1
2

1
2

0

0

 ,

and for the d transitions, it is
2 0

0 2

. Therefore, the Oseledec matrix is I in the

limit and both Lyapunov exponents are 0. A similar analysis applies anytime a
fractal set is used to keep track of a stack memory, where well-formedness maps to
an empty stack. In the general case, there must be at least one dimension of fractal
scaling, and that dimension will produce a zero Lyapunov exponent. The Lyapunov
values reported in the main body of the paper were calculated using the algorithm
of Von Bremmen, Udwadia, and Proskurowski (1997).

SYMBOLIC COMPUTATION 51

1
2(,) lim() ()) () (4)T tt t

t
OSL x S Df Df x A

��
�

� �

