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Abstract
We  explore  neural  network  learning  and  parallel  human 
learning on an artificial language task. The task generates rich 
data  on human interaction  with  syntactic  systems,  including 
recursive ones. Studying the network’s properties, we argue for 
a “Structured Manifold” view of syntactic representation. The 
“Structured  Manifold”  lies  in  the  parameter  space  (weight 
space)  of  the  network.  It  exhibits  (1)  loci  of  high  order, 
corresponding to complex rule systems, (2) continuity, which 
explains how one rule system can morph into another one, and 
(3) “recursion approximation”,  a concept related to symbolic 
recursion,  which  addresses  some  of  the  puzzles  about 
embedding patterns in human behavior.

Keywords: artificial  grammar  learning;  artificial  neural 
networks;  recurrent  networks;  simple  recurrent  networks; 
sequence learning; recursion; center embedding; rules.

0BIntroduction
What kind of structural  system underlies  human syntactic 
processing ability? Much work in linguistics addresses this 
question  by  exploring  syntactic  behaviors  in  natural 
languages. Work on artificial grammars offers a chance to 
obtain  detailed  information  about  human  interaction  with 
formal syntactic systems in the absence of semantic content 
or task-independent pragmatic function. Here, we introduce 
a variant on existing artificial grammar learning tasks that 
supports careful  comparison between human and artificial 
neural  network  models.  The  results  help  clarify  the 
difference  between  standard,  rule-based  conceptions  of 
grammatical  knowledge  and  the  claims  of  the  neural  net 
perspective,  providing some evidence  that,  at  least  in  the 
artificial grammar task, humans resemble the networks. We 
focus,  in  particular,  on  the  status  of  center  embedding 
recursion, which many authors view as an important feature 
of natural language systems, but whose status in the theory 
of  representation has  been much debated (e.g.,  Chomsky, 
1957; Christiansen & Chater, 1999; Friederici, 2002).

Center-embedding recursive patterning can be generated 
by context free grammars. Context free grammars are rule 
systems like Grammar G (Table 1) in which rules take the 
form (A  X1 X2 ... XN, for N a finite number), and there are 
designated starting rules. The grammar is said to generate a 
finite  sequence  of  symbols,  called  a  “sentence”,  if  it  is 
possible to make successive substitutions for symbols on the 

right hand side of a starting rule until no more substitutions 
can be made; the resulting right hand side is the generated 
sentence. Grammar G generates the sentences “1 2 3 4” (a 
Level 1 sentence), “1 1 2 3 4 2 3 4” (Level 2), “1 1 1 2 3 4 2 
3 4 2 3 4” (Level 3), etc. In formal language terminology,  a 
case where the system shifts to a deeper level of embedding 
(here,  1  after  1)—is called  a  “push”  and a  case  where  it 
shifts back (2 after 4) is called a “pop”. Keeping track of the 
syntactic  dependencies  requires  correlating  the  pops  with 
the pushes. The term “recursion” refers to the situation in 
which a rule can be invoked an unbounded number of times. 
“Center  embedding  recursion”  is  the  case  in  which  the 
symbol for such a repeatedly used rule occurs in the middle 
of one of the rules with symbols on either side of it (e.g., in 
G, “S” occurs with “1” to its left and “2” to its right in the 
first rule). Center embedding context free grammars are of 
particular  interest  because  a  system  for  generating  or 
recognizing all and only the sentences produced by a center 
embedding grammar needs an unbounded memory.  

It  is  generally  recognized  that  some  degree  of  center 
embedding  is  present  in  natural  languages,  for  there  are 
many situations  where  natural  languages  employ patterns 
within patterns of the same type—e.g.,  in relative clauses. 
This suggests that minds have recursive rule systems at their 
disposal for keeping track of these patterns. The recursive 
rule system is appealing as an explanation because it permits 
efficient  description  of  many cases  and  predicts  the  way 
people  exercise  their  language  knowledge  in  many  new 
combinations of words and phrases (Pinker, 1994). 

Yet humans have great difficulty processing more than a 
few levels  of  embedding  in  natural  language  (see  Lewis, 
1996). Similar findings characterize artificial grammar work 
on recursion (de Vries, Monaghan, Knecht, & Zwitserlood, 
2008; Poletiek, 2002). If a symbol processing system must 
only handle a few levels of embedding, then it is not strictly 
necessary to employ a recursive process—a weaker, finite-
state device, which has a limited memory capacity, can do 
the job. Proponents of recursive rules have suggested that 
memory  limitations  obscure  a  fundamentally  infinite 

Table 1: Grammar G. Both rules are starting rules.

    S → 1 S 2 3 4
    S → 1 2 3 4
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mechanism. But even if humans had such a mechanism, it 
would  be  impossible  for  finite  life-span  researchers  to 
observe its infinite behavior. Thus, the argument for human 
employment  of  recursive  systems  seems  to  founder  on  a 
shoal  of  infinity:  true  center-embedding  recursion  is 
distinguished by its employment of infinite memory, but we 
cannot  observe  infinite  memory,  so  it  is  hard  to  justify 
recursive rules.

Relevant to this discussion, artificial neural networks have 
been  used  to  model  many  aspects  of  natural  language 
behavior  and  they  are  often  claimed  to  do  so  without 
recourse to “explicit” rules (e.g.,  McClelland & Patterson, 
2002;  see  also  Pinker  &  Ullman  2002).  Elman’s  Simple 
Recurrent Network or “SRN” (Elman 1991) is a model of 
this sort that processes structured sequences. The SRN and 
its relatives have learned some elaborate patterns of center-
embedded recursion and have successfully generalized from 
training  on  less  deeply  embedded  cases  to  prediction  of 
more  deeply  embedded  cases  (Rodriguez,  2001;  Wiles  & 
Elman, 1995). However, they also do not typically extend 
the patterns very far beyond their training (Christiansen & 
Chater,  1999).  In  light  of the difficulty that humans have 
with processing deep center embeddings, Christiansen and 
Chater  argue  that  the  networks’  behavior  provides  an 
appealing alternative account to the recursive rule approach. 

However,  the  network  representations  are  not  well 
understood.  In  particular,  if  the  networks  do  not  employ 
rules, it is not clear what kinds of order they predict should 
occur; nor is it clear why observed behaviors can often be 
given a parsimonious description with systems of rules. We 
suggest that it will help to look closely at the nature of the 
network  representations,  in  conjunction  with  detailed 
measurement  of  human  behavior  on  a  task  that  both 
networks and humans can perform well.  Through such an 
approach, we can acquire some insight to the conundrums of 
human recursive patterning.

In  particular,  we suggest  that  the network view is  well 
described as a “Structured Manifold” account. We use the 
term manifold to draw attention to the fact that the network 
parameters are real-valued so they can change continuously, 
and  continuous  change  of  parameter  values  is  associated 
with  continuous  change  in  the  network’s  behavior  (see 
Spivey,  2007).  This  property  is  useful  for  explaining  the 
learning  phenomena—it  makes  it  so  the networks can  be 
sensibly  described  as  “getting  closer”  to  a  particular 
structural behavior before the behavior actually appears. On 
the other hand, the structured part of “Structured Manifold” 
refers to the fact that the network behaviors in the context of 
a particular environment tend to concentrate around a few 
types.  These  types  correspond  to  qualitatively  distinct 
lawful  patterns  in  the  network’s  relationship  to  its 
environment.  They are closely related to rule-systems, for 
they correspond to systematic insights about the patterns in 
the world. In  particular,  the Structured Manifold approach 
suggests a way of understanding “recursion” that avoids the 
“shoal of infinity” mentioned above.  We say that a pattern 
of  behavior  approximates  a  recursive  mechanism if 

knowledge  of  one  structural  feature  of  the  environment 
transfers  to another  structural  feature which is recursively 
related  to  the  first.F

1
F The  knowledge  need  not  transfer 

perfectly and thus the system may not follow the recursive 
rule to arbitrary levels, but to the degree that the system’s 
knowledge is iteratively effective, it will be said to form a 
“good” approximation of the recursion. Thus the definition 
clarifies the sense in which a network can be “close to” a 
recursive  behavior  without  embodying  it.  The  definition 
also  allows  perfect  recursion  to  be  present  at  a  locus  in 
parameter space, in keeping with formal analyses of some 
recurrent networks (Tabor, 2000; 2009). There is also a way 
of gleaning empirical evidence for recursion approximation: 
statistical evidence that a system bases its behavior with a 
more  embedded  case  on  its  knowledge  about  a  less 
embedded one counts as such.

The remainder  of  the paper  is  organized as  follows: in 
“Task” we introduce the grammar learning task. In “Simple 
Recurrent  Network  Model”,  we  describe  the  outcome  of 
training  many  SRNs  on  the  task  and  testing  three 
hypotheses—Grouping,  Continuous  Interpolation,  and 
Recursion  Approximation—generated  by  the  Structured 
Manifold  view.  In  “Human  Grammar  Learning 
Experiment”,  we  report  on  a  parallel  study  with  human 
grammar learners. “General Discussion” concludes.

1BTask
We  employed  a  grammar  learning  task  called  the  Box 
Prediction Task that is a variant of sequence learning tasks 
(Clegg, Di Girolamo, & Keele, 1998). In sequence learning, 
a popular task is the Serial Reaction-Time task (Nissen & 
Bullemer,  1987)  where  stimuli  are  presented  sequentially 
and participants respond to each stimulus (e.g., by clicking 
on  the  place  where  the  stimulus  appeared).  Participants’ 
responses  trigger  the presentation of the next stimulus.  In 
patterned  sequential  data,  reaction  times  often  reflect  the 
predictability of the sequence,  suggesting that  participants 
develop a structured encoding of the data.  However,  it  is 
difficult  to  tell  from  the  data  in  such  a  task  when  a 
participant has reliably detected complex dependencies like 
those that occur in center-embedding. 

In  the  Box  Prediction  Task,  stimuli  are  presented 
sequentially but  participants  are asked to  predict  the next 
stimulus instead of simply reacting to the current stimulus. 
Human participants predict by clicking a box on a screen. 
They  immediately  get  feedback  because  the  correct  box 
changes color (from black to green or blue). The networks 
predict by activating output nodes corresponding to boxes. 
They also get immediate feedback in the form of a vector 
indicating which symbol the grammar produced next. 

1 We  assume,  for  analysis  purposes,  that  the  environment 
contains  patterns  which  are  describable  by recursive  rules.  This 
assumption  does  not  commit  us  to  claiming  that  actual 
environments  have infinite  patterning.  Instead,  one can think of 
this assumption as a tool for understanding the structure of human 
and network behaviors.
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Many  artificial  grammar  learning  tasks  have  tested 
languages  with  high  nondeterminism (e.g.,  Reber,  1967). 
Performing the Box Prediction Task with such data would 
be very frustrating because only a few responses are likely 
to be correct. We therefore employed a grammar (G) with 
very little nondeterminism and we color-coded the pushes 
(blue),  which  are  the  only  nondeterministic  transitions, 
telling the participants that they need not predict them.

Sentences  generated by the grammar were concatenated 
to  form  long  training  sequences  that  were  presented 
sequentially to networks and human participants. 

2BSimple Recurrent Network Simulations
Method. 22  Simple  Recurrent  Networks  (SRNs)  with  the 
same architecture (Figure 1) were constructed and the initial 
weights  were randomly set (uniform distribution on [-0.1, 
0.1]). Each network was trained twice from the same initial 
weights on a sequence of Level 1 and Level 2 sentences. In 
the  first  sequence,  the  average  frequency  of  Level  2 
sentences increased over the course of 8000 trials (Table 2). 
In the second sequence, it decreased. We expected Sequence 
1,  which emphasized Level  1  before  Level  2,  to  produce 
better  recursion  approximation  because,  in  recursive 
generalization, (Level) 2 to 3 parallels 1 to 2, not 2 to 1.
Results. We asked  three  questions  about  the  ensemble  of 
networks: (1 “Grouping”) Can the networks be grouped into 
a few, qualitatively distinct behaviors which correspond to 
rational responses to the task environment? (2 “Continuous 
Interpolation”) Do the networks favor intermediate states, in 
which they blend the qualitative behaviors just mentioned? 
(3 “Recursion”) Is there evidence that the more successful 
individuals approximate a recursive mechanism?

For  (1  “Grouping”)  we  used  a  cluster  analysis.  After 
training, we fixed the weights of each network and tested it 
on  a  Level-1,  a  Level-2,  and  a  Level-3  sentence,  thus 
examining a total  of 24 word-to-word transitions. Level-1 
and Level-2 sentences occurred in training, but Level-3 did 
not.  We  interpreted  the  network’s  output  nodes  as 
probabilities by using the Luce Choice Rule with base e10 

and  computed  the  expected  accuracy  of  each  network  at 
each transition from these probabilities. We then applied K-
means  clustering  to  the  24  accuracy  values.  A  standard 
method of  choosing the number of  clusters,  selecting the 
“knee”  in  the  plot  of  within-group  sum  of  squares  vs. 
number  of  clusters,  suggested  3,  4,  or  5  clusters. F

2
F For 

simplicity,  and for  alignment  with the analysis  of  human 
data reported below, we focused on the 3-cluster case.The 
accuracies  of  the  three  clusters  are  shown  in  Figure  2 
(means shown in bold). The means of Cluster 1 indicate that 
Cluster  1  networks  tend  to  employ  a  “Simple  Markov” 
strategy:  12,  23,  34,  41 (these  numbers  refer  to 
grammar  symbols).  Each  prediction  by  the  network  is 
conditioned strictly on the input, even if a push or a pop 
produces a violation of expectation. The means of Cluster 2 
indicate  that  Cluster  2 networks also use the rules,  12, 
23,  and  34,  but  the  networks  switch  between  two 
modes of responding to input 4: if the previous successor of 
4 was 1, then the next response to 4 is 1. If  the previous 
successor of 4 was 2, then the next response to 4 is 2. This 
“2-Mode Perseverater” has some memory for the past, but 
cannot  keep  track  of  the  correlation  between  pushes  and 
pops. The Cluster 3 means indicate that Cluster 3 networks 
expect a Level  1 sentence if the sentence begins 1-2, and 
they expect a Level 2 sentence if the sentence begins 1-1-2. 
However, they don’t, on average, generalize the dependency 
to level 3; instead, most of them tend to treat 1-1-1-2 the 
same as 1-1-2, thus failing on the second pop of Level  3 
sentences.   Nevertheless,  these  “Fragile  1-Counters” 
approximate  the  behavior  of  the  unbounded  recursion 
generating process  better  than the other  two types  (Mean 

2 We also sought a maximum of the Calinski-Harabasz pseudo-
F statistic (Calinski & Harabasz, 1974), another standard method, 
but there was no clear maximum.

Figure 2: Network Clusters. Li_j(k) means 
Level i, j’th word, symbol k.

Table 2: Distribution of sentences in the 2 sequence types.

Sequence 
Type

No. of sentences per phase
Phase1 Phase2 Phase3 Phase4 Total

Sequence 1
L1 sentence 2000 2000 2000 2000 8000
L2 sentence 200 400 600 800 2000

Sequence 2
L1 sentence 2000 2000 2000 2000 8000
L2 sentence 800 600 400 200 2000

Figure 1: Network architecture.
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Accuracies:  Simple  Markov  77%,  2-Mode  Perseverator 
77%,  Fragile  1-Counters  83%).  In  sum,  the  clustering 
analyses reveal that the networks fall into distinct qualitative 
categories  which  are  associated  with  distinct  systematic 
responses to the task. Although one  might expect Sequence 
1 to encourage 1-counting and Sequence 2 to discourage it, 
a likelihood ratio test showed no effect of training condition 
on the distribution of clusters, even with clusters 2 and 3 
treated as one (χ2(1) = 2.42, p = .120) (Table 3).  

To  investigate  (2  “Continuous  Interpolation”),  we 
contrasted  two  hypotheses:  (a)  network  behaviors  are 
distributed as cluster prototypes + noise (equal distortion in 
all  directions);  (b)  the  networks  approximate  blends  of 
behaviors  associated  with  the  various  cluster  prototypes. 
Under both (a) and (b), a network could be proximal to a 
pure complex behavior (e.g., a recursive grammar) without 
precisely  embodying  it.  But  in  (a)  deviations  have  low 
likelihood of  leading to purer  recursion because  they can 
occur in any direction; in (b) deviations are more likely to 
lead to purer behavior because the models are restricted to a 
low-dimensional  manifold.  In  this  sense,  proximity  of  a 
network in case (b) to an ideal complex behavior is a more 
reliable  indication  that  the  network  will  robustly  exhibit 
complexity, than in (a). How can we tell (b) apart from (a) 
empirically?  If  (a)  holds,  then  the  variation  of  each 
network’s  behavior  on  each  transition  is  expected  to  be 
equal.  If  (b)  holds,  then  the  individual  networks  are 
expected to show greater variation on transitions in which 
networks tend to contrast  than on transitions in which all 
networks  tend  to  agree.  We  tested  this  hypothesis  by 
comparing the variances of individual networks’ behaviors 
on different types of transitions during the last 99 trials to 
the global variances on the same types of transitions (global 
variance  on a transition T is  the total  variance  across  all 
network  behaviors  on  T).  Examining  all  44  trained 
networks, we considered the 24 transition types associated 
with 1-level, 2-level and 3-level sentences. We hypothesized 
that each 24-element vector of individual variances would 
be  more  aligned  with  the  24-element  vector  of  global 
variances  than  with  a  24-element  vector  of  uniform 
variances. Indeed, a paired t-test on our 44 network sample 
showed that the cosine of the angle between the individual 
variance  vector  and  the  global  variance  vector  was 
significantly bigger than the cosine of the angle between the 
individual  variance  vector  and  any  positive  uniform 
variance vector (p < .001).

For  (3  “Recursion”),  we  examined  individual  network 
response patterns to see if any of the networks generalized 
to  correct  performance  on  Level  3,  provided  they  had 
learned  correct  performance  on  Level  2.  We  counted  a 
network as having correct performance on a sentence if its 
accuracy was above 0.5 on all  deterministic transitions in 

the sentence. Indeed, by this criterion, three of the networks 
from Cluster  3  exhibited correct  performance  on Level  3 
sentences. Moreover, a regression analysis showed that even 
when these three networks were removed from the data set, 
better  performance  on  Level  1  and  2  sentences  predicted 
better performance on Level 3 sentences (r = 0.32, p < .05). 
These observations suggest  that the networks that do well 
on Level 3 sentences do so in virtue of their ability to do 
well  on  Level  2  sentences,  even  if  they do  not  precisely 
embody  the  recursive  generating  process.  Under  the 
definition  given  in  the  Introduction,  this  observation 
suggests  that  the  networks  approximate  a  recursive 
mechanism. 

3BHuman Grammar Learning Experiment

4BMethod
Participants.  44  college  students  from  the  University  of 
Connecticut participated for course credit.
Materials. Two sequences of 400 trials each were created. 
In both sequences 1 and 2 there were 38 Level-1 sentences, 
25 Level-2 sentences, and 4 Level-3 sentences. The last 99 
trials of both sequences were identical. The first instance of 
a  level-3  sentence  occurred  at  trial  302  so  trials  1-301 
served as an analog of network training and trials 302-400 
served as an analog of network testing. In Sequence 1 the 
density of Level 2 sentences changed from low to high over 
the  course  of  trials  1-301.  Sequence  2  had  the  reverse 
progression. A windows PC with speakers on the monitor 
and a standard mouse were used for the display and input. 
The experiment was run in E-Prime. 
Procedure. Participants saw 4 black boxes on a screen. The 
boxes were positioned in a circle with grammar G numbers 
associated  counterclockwise,  but  not  indicated  on  the 
screen.  Each  participant  ran  only  one  sequence.  When  a 
participant clicked a box, one of the 4 boxes would turn a 
different  color  indicating  that  it  was  the  next  box  in  the 
sequence.  The participant  was  instructed  to  try  to  predict 
which box would next change color and click on it. It was 
emphasized that the goal was prediction, and not to simply 
click  the  box  which  had  previously  changed  color.  If  a 
participant  predicted  the  wrong  box  on  non-push  trial,  a 
short beep sounded. No sound was played if the participant 
predicted  the correct  box. The correct  next  box generally 
changed from black to green, except on push trials, where 
the second 1 box changed to blue, and the third to cyan (in a 
Level  3  sentence).  Participants  were  instructed  that  they 
need  not  predict  the  blue/cyan  boxes.  The  computer 
recorded the accuracy of the participants’ predictions. 

5BResults
Mean accuracies over the course of the task are shown in 
Figure  3,  separated  into  3  classes:  sequential  transitions 
pops, and pushes. A logistic regression analysis supported 
staged learning—e.g., final pops learned before intermediate 
pops in Level  2 sentences for Sequence 1 (p < .001). We 

Table 3: Networks per cluster for each condition.

Cluster 1 Cluster 2 Cluster 3
Sequence 1 11 1 10
Sequence 2 6 5 11
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focused  our  analysis  on  the  last  99  trials,  when  both 
sequence types experienced the same sequence of boxes. 

(1 “Grouping”) In the human case, the Calinski-Harabasz 
pseudo-F statistic had a clear maximum at 3 clusters so we 
examined this case  (Figure  4).  Figure  4 suggests  that  the 
participants  in  Human  Cluster  1,  like  the  networks  in 
Network  Cluster  1,  employ  the  Simple  Markov  system. 
Cluster 2 is much more sensitive to the temporal structure of 
pops  and  pushes,  for  these  participants  perform  more 
accurately on the Level 2 pop and the first Level 3 pop, than 
Cluster 1 participants. Cluster 2 participants tend to employ 
the rule, 1  1, so they have relatively high accuracies on 
pushes (even though the instructions said that the blue boxes 
need  not  be predicted).  Although these  “Push Predictors” 
did numerically better than Cluster 1 on the second pop of 
Level 3, their mean performance on this transition was less 
than 0.5, suggesting that they are not robustly sensitive to 
the correlation between pushes and pops. Cluster 3 uses a 
different  strategy  with  pushes—they  generally  predict  2 
after 1, thus failing to predict the pushes and successfully 
predicting  the  finite  state  transitions  from  1  to  2.  These 
“Push  Blindsiders”  are  even  better  than  Cluster  2  at 

predicting the correlation between pushes and pops. In fact, 
the Cluster 3 mean accuracy on the second Level 3 pop is 
above 0.5. These results indicate that the human behaviors, 
like  the  network  behaviors,  can  be  grouped  into  several 
different coherent responses to the task, though the human 
cluster  prototypes  are  associated  with somewhat  different 
strategies than the network cluster prototypes. Table 4 gives 
the number of participants in each cluster as a function of 
training  sequences.  A  likelihood  ratio  test  of  showed  no 
effect  of training condition on the distribution of clusters, 
even with Clusters 2 and 3 treated as one (χ2(1) = 2.34,  p 
= .126).  

Regarding (2 “Continuous Interpolation”), comparison of 
variance vectors confirmed that, for humans, like networks, 
most  of  the  individual  variation  was  on  dimensions  on 
which there was high global variance (p < .001). As with the 
nets,  this  result  suggests  that,  when  the  humans  diverge 
from the  coherent  behaviors  associated  with  the  clusters, 
they  tend  to  diverge  in  the  direction  of  other  coherent 
behaviors.  Interestingly,  when  we  performed  the  global 
variance test on a cluster by cluster basis, Clusters 2 (N = 7) 
and 3 (N = 18) showed significant correlation, but Cluster 1 
(N = 19)  did not,  even  though Cluster  1  had  the  largest 
sample size. These results provide suggestive evidence that 
the Push Predicters and the Push Blindsiders are hamstrung 
between the pull of their cluster prototypes and the impulse 
to  be  like  Simple  Markov  processes,  or  like  each  other, 
while  the  Simple  Markov  processors  are,  on  average, 
insensitive to the non Markovian structure in the data.   

Regarding (3 “Recursion”),  there were five participants, 
all  Push  Blindsiders,  whose  mean  accuracy  on  all 
deterministic Level 1, Level 2, and Level 3 transitions never 
strayed  more  than  0.5  away  from  the  predictions  of  the 
generating process over the last 99 trials. These people can 
be said to have mastered the push-pop correlation across the 
three levels, providing suggestive evidence that they employ 
a recursive mechanism. Furthermore,  a regression analysis 
showed  that  mean  accuracy  on  Level  3  sentences  was 
positively correlated with Level 1/2 accuracy in the last 99 
trials (b = 0.633, t = 3.38, p < .01). This result is consistent 
with the recursion approximation hypothesis: the correlation 
between Level 1/2 and Level 3 suggests that the structural 
insight  about  Level  1/2  is  being  used  to  solve  Level  3. 
However,  the  humans,  unlike  the  networks,  can  keep  on 
learning  during  the  “test”  trials,  so  the  correlation  might 
stem from a greater learning facility in some humans than 
others:  those who have greater  learning facility will  learn 
Level 1 and 2 sentences better during trials 1-301 and they 
will also learn Level  3 sentences  better during trials 302-
400, but they might not use any of their knowledge of Level 
1 and 2 sentences to solve Level 3. However, in a separate 
analysis, Sequence Type predicted Level 1/2 accuracy (b = -
0.052,  t = -2.53,  p < .05). These results are unexpected on 
the Learning Facility account for two reasons: the density 
manipulation does not change the total amount of exposure 
to Level 1 and Level 2 sentences, so if these were simply 
learned on the basis of exposure, there would be no reason 

Table 4: Participants per cluster for each condition.

Cluster 1 Cluster 2 Cluster 3
Sequence 1 7 3 12
Sequence 2 12 4 6

Figure 3: Mean accuracy change during the task. 
Level 3 2nd pop trials (L3_10(2)) are circled.

Figure 4: Human clusters.
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for  a  Sequence  Type  effect  on  Level  1/2.  Second  if,  as 
claimed by the Learning Facility account, Level 3 sentences 
are learned independently of structural insight gleaned from 
Levels  1 and 2,  then there would be no reason to expect 
Level 3 variation to be related to anything except participant 
identity.  Instead,  the  data  suggest  that  Sequence  type 
influences the learning of Levels 1 and 2, and the nature of 
this learning, in turn, influences performance on Level 3s, 
consistent with the recursion approximation hypothesis.

6BGeneral Discussion
The  similarities  between  the  network  and  human  results 
provide  some  evidence  that  the  Structured  Manifold  is  a 
good  framework  for  understanding  human  syntactic 
encoding, at least in artificial grammar learning.  

The  network  analysis  helps  clarify  the  notions  of 
“Grouping”,  “Continuous  Interpolation”  and  “Recursion 
Approximation”. In particular, the Grouping results provide 
evidence  that  network  interaction  with  the  environment 
focuses  on  a  small  finite  number  of  coherent  behaviors. 
Even the Simple Markov system, though it is not optimal 
for the task, detects a level of regularity which is inherent in 
the task  structure---the  so-called  “second-order”  statistical 
approximation. In dynamical systems terms, it seems likely 
that these structures are attractors of some sort. It  may be 
helpful to ask what the nature of their stability is within the 
panoply of dynamical stabilities (see Tabor, 2009). 

The  Continuous  Interpolation  results  are  related  to 
parameter-setting models of syntax (e.g. Chomsky, 1981) in 
the sense that they provide a reduce-dimension description 
of the range of expected behavior. An important difference 
between the current model and linguistic parameter setting 
models, is that the structure of the “parameters” was derived 
from  the  interaction  of  a  very  general-purpose  learning 
mechanism with the environmental data. Thus, this appears 
to be a less nativist kind of parameter setting.

Finally, the Recursion Approximation analysis suggests a 
way of reconciling the desirable properties of recursive rules 
with the facts that human behavior is imperfect and cannot 
be  infinitely  observed.  Combined  with  the  Continuous 
Interpolation observation, the results suggest understanding 
states of a system as being related  not  just  to one but  to 
many ideal forms. This suggests shifting away from a view 
of organisms as “having a knowledge system” and toward a 
view  in  which  they  can  be  “in  the  sphere”  of  multiple 
systems.  Their  actual  behavior  is  not  static,  and  may be 
understood as a structured trajectory through these spheres.
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