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Parsing in a Dynamical System: An Attractor-based
Account of the Interaction of Lexical and Structural

Constraints in Sentence Processing
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University of Rochester, Rochester, NY, USA

A dynamical systems approach to parsing is proposed in which syntactic
hypotheses are associated with attractors in a metric space. These attractors
have many of the properties of traditional syntactic categories, while at the
same time encoding context-dependent, lexically speci�c distinctions.
Hypotheses motivated by the dynamical system theory were tested in four
reading time experiments examining the interaction of simple lexical
frequencies, frequencies that are contingent on an environment de�ned by
syntactic categories, and frequencies contingent on verb argument structure.
The experiments documented a variety of contingent frequency effects that cut
across traditional linguistic grains, each of which was predicted by the
dynamical systems model. These effects were simulated in an implementation
of the theory, employing a recurrent network trained from a corpus to
construct metric representations and an algorithm implementing a
gravitational dynamical system to model reading time as time to gravitate to an
attractor.

INTRODUCTION

Bever’s pioneering work (e.g. Bever, 1970) established that readers and
listeners have strong preferences for certain syntactic sequences. For
example, a noun phrase–verb–noun phrase sequence at the beginning of a
sentence is typically taken to be a main clause. These preferences are
revealed in garden-path effects for sentences with temporary syntactic
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1Other two-stage models allow lexically based syntactic constraints to affect �rst-stage
parsing, but still exclude non-syntactic lexical constraints and information such as frequency
that is not incorporated into traditional grammars (e.g. Pritchett, 1992).

amgibuities that do not conform to these preferred syntactic con�gurations,
as illustrated in the examples in (1):

1a. The horse raced past the barn fell.
1b. The woman warned the lawyer was misguided.

Structural preferences like these inspired a family of parsing models in which
category-level structure guides the initial syntactic structuring of the
linguistic input (for a review, see Tanenhaus & Trueswell, 1995). For
example, in an in�uential proposal of this class, the two-stage, or “garden
path” model, developed by Frazier and colleagues (Frazier & Rayner, 1982;
Frazier, 1987), initial structure is assigned using only syntactic category
information, and a small set of structurally de�ned parsing principles such as
minimal attachment or late closure. Other information is used to evaluate,
�lter and, if necessary, revise the initial structure. Information excluded
from initial consideration includes lexically speci�c syntactic and semantic
information (e.g. information about the types of complements licensed by a
verb and the semantic properties or thematic roles associated with these
complements).1 Evidence in support of these claims comes from numerous
studies demonstrating increased processing dif�culty in the form of elevated
reading times when the structure that is ultimately correct is consistent with
lexical constraints but inconsistent with category-based parsing principles
(for reviews, see Frazier, 1987; Mitchell, 1989; Mitchell, Cuetos, Corley, &
Brysbaert, 1995). Thus elevated reading times re�ect syntactic misanalysis
and the time it takes the reader to recover from the misanalysis.

More recently, however, a body of research has emerged demonstrating
that lexically speci�c syntactic and semantic information, including the
frequencies with which lexical items occur in different environments, can
reduce, and sometimes eliminate, many strong structural preferences (for
recent reviews, see MacDonald, Pearlmutter, & Seidenberg, 1994; Tanen-
haus & Trueswell, 1995). For example, the sentences in (2) illustrate that, for
both of the types of ambiguities in (1), there are sentences with the same
structure, but with different lexical items, that are read with little or no
processing dif�culty (Garnsey et al., 1995; Trueswell, 1996; Trueswell,
Tanenhaus, & Garnsey, 1994; Trueswell, Tanenhaus, & Kello, 1993).

2a. The land mine buried in the sand exploded.
2b. The woman said the idea was misguided.

Several classes of theoretical alternatives can be adopted to account for
these lexical in�uences. One alternative is to retain a two-stage architecture
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2Charniak (1993) reviews automatic parsing models along these lines; Jurafsky (1996)
describes a conditional probability model which assigns preferences to ambiguous sequences
that are broadly consistent with experimental results in the psycholinguistic literature.

to capture clear cases of structural infuences. Lexical in�uences are then
attributed to rapid revision effects (Frazier, 1989; Mitchell, 1989), with
processing dif�culty re�ecting the time it takes to complete the revision.
However, two-stage models do not have a principled way of accounting for
why lexical in�uences are strong enough to completely mask putative
�rst-stage effects in some syntactic environments but not others.

A second, more promising alternative is to treat structural and lexical
in�uences as arising from a system that integrates constraints from
independent levels of representation; for example, structural biases are
couched in terms of sequences of categories (phrase structure rules) and
lexical biases, including preferences for syntactic categories, argument
structures, thematic structures, and so forth. A sensible �rst hypothesis is to
assume that this information is combined in a probabilistic model. At each
point in the sentence, the conditional probabilities  of the possible continu-
ations are computed. Processing load is then inversely related to the
probability of occurrence of the actual sequence encountered; that is,
low-probability sequences are relatively dif�cult to process.2 Conditional
probability models provide a theoretical basis for incorporating probabilistic
lexical information into a model that uses syntactic rules. However, they do
not provide insight into the systematic variation across contexts of the
relative strengths of structural and lexical constraints. Standard conditional
probability models also have a hybrid architecture in that they assume
representations that are intrinsically discrete (e.g. rules in a symbolic
system), and then impose probabilities  on these rules. This begs important
questions about how the representations in the system emerge during
learning. These issues are closely related to the questions about how to
de�ne and combine information at different linguistic grains (cf. Mitchell et
al., 1995).

This paper explores a third alternative, which we believe has the potential
to provide revealing insights into both the nature of linguistic represen-
tations and the processing dynamics that operate on these representations.
The basic idea following similar proposals by Elman (1993), Kawamoto
(1993) and others is inspired by dynamical systems theory and represen-
tational ideas drawn from the connectionist learning literature. We assume
that processing involves following a trajectory through a metric space,
structured according to a similarity principle, such that words that are likely
to lead to similar continuations are close to one another in representational
space. Categorically distinct states of the language processor are associated
with distinct attractors. Processing involves using the information provided
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by each successive word to place the processor somewhere in an attractor
space and then letting it gravitate to whatever attractor manages to capture
it. Successful parsing of each partial word sequence corresponds to arriving
at, or getting very near, a single attractor (so there is no uncertainty about
the current categorical status). The path followed by the trajectory through
the attactors represents the syntactic structure of the sentence. Processing
time is modelled as time taken to gravitate to such a state.

While this system can, in principle, be applied to both syntactic category
ambiguities and attachment ambiguities, involving phrase-level structure,
this paper will focus on syntactic category ambiguities. The hypothesis we
are exploring is that category-based parsing preferences are embedded in
representations that emerge within a constraint-based learning system
because of similarities among lexical items in particular syntactic contexts
(e.g. Juliano & Tanenhaus, 1994). The hypothesis is that an appropriate
balance between lexcial and structural in�uences will arise as a result of
(a) the nature of the lexical input, (b) the learning system that creates
representations based on this input, and (c) the processing dynamics of the
system.

The remainder of the paper is organised into six sections. First, we provide
a brief introduction to some important constructs of dynamical systems
theory, emphasising the theoretical constructs we apply to syntactic
processing. The next section then presents three self-paced reading experi-
ments that examine the interaction of contingent (i.e. conditional) fre-
quencies at different linguistic grains to test some hypotheses derived from
our approach. These experiments also serve as the empirical base for
evaluating an implementation of our theory, which is presented in the
following section. We implement the model with a dynamical system that
uses representations developed by a recurrent neural network trained on
word prediction (Elman, 1990, 1991) with inputs from small �nite-state
grammars. The penultimate section presents a model trained from a
representative sample of a real corpus and uses it to model verb-speci�c
variance in reading times for an experiment also reported in this section. The
�nal section summarises our results and discusses the strengths and
limitations of our models, as well as alternative approaches.

PARSING IN A DYNAMICAL SYSTEM

Dynamical systems theory is typically concerned with systems that change
continuously with time (for good introductions, see Abraham & Shaw, 1984;
Perko, 1991; Strogatz, 1994). Examples include: swinging pendulums;
orbiting stars and planets; populations �uctuating in an ecosystem; gases
swirling around in an atmosphere. It is useful to consider the trajectories of a
dynamical system—that is, the paths it can follow as time progresses. In the
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case of the rigid-arm pendulum, some trajectories swing back and forth,
others whirl around the circle, and two of them remain at one point
inde�nitely (hanging down and, improbably, balanced straight up). If the
pendulum is damped, then all trajectories except those leading to the
improbable state approach the low point-trajectory in the limit. Such a
limiting trajectory is called an attractor. Those starting points from which the
system gravitates towards a particular attractor A are collectively referred to
as the basin of attraction of A. The basin of attraction of the pendulum’s low
attractor consists of every state except those that lead to the improbable
state. In the case of a planetary system, each large mass is surrounded by its
own basin of attraction. If a dynamical system is near one attractor and far
from others, its behaviour is dominated by that attractor. By contrast, if the
system is in a position intermediate between several attractors, it shows all of
their in�uences simultaneously. We will refer to this property of attractors as
the local dominance property. Local dominance is easy to understand
intuitively in the case of a planetary system: A satellite near one large mass
behaves, for all practical purposes, as though that mass is the only mass
around, but a satellite roughly equidistant from several masses moves on a
complex trajectory which re�ects their simultaneous in�uences. We take
advantage of the local dominance property of attractors to model the
interaction of syntactic and lexical in�uences on sentence processing.

We hypothesise that categorically distinct states of the language processor
are associated with distinct attractors in a metric space that is structured
according to a similarity principle. Partial word sequences occupy nearby
positions in the space if they are likely to have similar continuations.
Processing involves using the information provided by each successive word
to place the processor somewhere in an attractor space and then letting it
gravitate to whatever attractor manages to capture it. Successful parsing of
each partial word sequence corresponds to arriving at, or getting very near, a
single attractor (so there is no uncertainty about the current categorical
status). Processing time is modelled as the time taken to gravitate to such a
state. The syntactic structure of the sentence can be represented by the
succession of attractors that the processor visits during the processing of the
sentence.

This similarity-based processor is closely related to a symbolic processor
based on a grammar of the language. In particular, corresponding to each
state, S[i], of the symbolic processor, there is a continuous (connected)
region, R[i], in the metric space. Importantly, the use of regions instead of
states allows the processor to be sensitive to quantitative distributional
differences among elements belonging to the same lexical class. These
differences give rise to small, within-region contrasts. For our current
purposes, the most important property of the metric space representation is
that syntactic category ambiguity is associated with representational
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intermediacy , as in Kawamoto’s (1993) model of lexical ambiguity
resolution. The following two examples help illustrate this point:

Example 1. Temporarily ambiguous word sequences give rise to
intermediate representations. For instance, the sentence fragment the insect
examined . . . is ambiguous between a past-participle and a main verb
interpretation of the verb examined. Thus the fragment’s representation in
the metric space is intermediate between, for example, the representation of
the insect knew . . . and the representation of the insect known . . . If, as seems
likely in this case, nouns like insect more often function as the object of verbs
like examined in a corpus used to derive the representation, then the
fragment the insect examined . . . will be placed closer to the representation of
the insect known . . . than to the representation of the insect knew . . . A noun
with the opposite distributional tendency (e.g. entomologist ) will have the
opposite representational leaning.

Example 2. Grammatically unambiguous cases involving a mixture of
signals can give rise to representational intermediacy. For example, that
person . . . will be placed in the metric space between this person . . . and that
people . . . (as in That people starve is unacceptable) but closer to this person
. . . However, the possible continuations are consistent with only the
Determiner + Singular Noun pattern (this person . . .) and so the
representational leaning in this direction is extremely strong, even though
the presence of the word that in that person produces a bias in the direction of
the sentential subject interpretation. This bias will in�uence the
representation in a small way after the disambiguating word person has been
encountered.

We can use the attractor mechanism to achieve an appropriate balance
between structural and lexical in�uences in a variety of syntactic contexts.
We hypothesise that in contexts in which lexical in�uences are robust, the
processor lands in a range of intermediate positions between attractors, and
thus takes different amounts of time to reach certainty, depending on which
lexical items are involved. In such cases, lexical manipulations alone are
expected to determine the state of the processor. Thus the model has a way
of handling the sensitivity to lexical differences which two-stage models have
trouble with. Moreover, in contexts where lexical effects are more subtle, we
expect the processor to land close to a single attractor every time the context
is encountered. In implementations of the model, we use a connectionist
learning network trained from a corpus to generate processing locations and
an explicit gravitational algorithm to measure gravitation time to an
attractor.

The dynamical framework leads to a uniform treatment of frequency
effects in parsing that is similar in spirit to recent attractor-based accounts of
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frequency and consistency effects in word recognition (e.g. Plaut,
McClelland, Seidenberg, & Patterson, 1996), and of syntactic category shifts
during language change (Tabor, 1994, 1995). Super�cially contradictory
effects of linguistic generalisations at different levels of traditional linguistic
structure or grains (Mitchell et al., 1995) emerge as natural properties of the
model. Moreover, many local processing dif�culties that are typically
attributed to syntactic misanalysis receive an alternative interpretation as
competition among attractors, even when the processing system adopts the
correct analysis. This competition account is consistent with claims made by
many constraint-based models (e.g. Bates & MacWhinney, 1989; Hanna,
Spivey-Knowlton, & Tanenhaus, 1996; MacDonald et al., 1994; Spivey-
Knowlton, Trueswell & Tanenhaus, 1993; Spivey-Knowlton & Sedivy, 1995;
Spivey-Knowlton & Tanenhaus, submitted; Tanenhaus & Trueswell, 1995).

CONTINGENT FREQUENCIES AND THAT

To evaluate the hypotheses introduced in the previous section, we explored
a linguistic domain which seemed promising for observing emergent
category effects and lexical-category interactions. The word that has several
propeties, making it a useful test case. That is ambiguous among multiple
syntactic categories. For example, that can be a demonstrative determiner as
in (3a), a complementiser as in (3b), a relative pronoun as in (3c), and a
pronoun as in (3d). These category ambiguities can give rise to phrasal
ambiguities, including the ambiguities in several structures that have �gured
prominently in the psycholinguistics literature.

3a. That experienced diplomat would be helpful to the lawyer.
3b. That experienced diplomats would be helpful made the lawyer

con�dent.
3c. The experienced diplomat that the lawyer admired was helpful.
3d. The lawyer didn’t believe the experienced diplomat said that.

We will focus exclusively on the ambiguity between that as a
complementiser and that as a demonstrative determiner, an instance of
a lexical category ambiguity that leads to phrasal ambiguity. When used as a
demonstrative determiner, that introduces a noun phrase; when used as a
complementiser, that introduces a sentence complement. This is illustrated
in examples (3a) and (3b). In sentence (3a), that experienced diplomat is the
subject noun phrase of a main clause, whereas in (3b), that experienced
diplomats is the beginning of an extraposed sentence complement. The
number of the noun disambiguates that as either a complementiser or a
determiner. With a plural noun, that must be a complementiser because that
is singular and demonstrative determiners have to agree in number with the
noun they specify. With a singular noun, that must be a demonstrative
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because the head noun in a bare noun phrase (i.e. a noun phrase without a
speci�er) must be plural.

The relative frequency with which that is used as a complementiser and a
determiner varies with syntactic environment. According to the Francis and
Kucera (1982) counts based on the Brown corpus, that is used more
frequently as a complementiser (70%) than as a demonstrative determiner
(15%). However our analysis of the Brown corpus revealed that, at the
beginning of a sentence, that is more often used as a determiner (35%) than
as a complementiser (11%), whereas after a verb, that is more often used as a
complementiser (93%) than as a determiner (6%). Note that the statistics
associated with that run counter to the more general bias for a determiner
that follows a verb to introduce an NP-object complement. In addition, when
that follows a verb, an environment in which it is typically a complementiser,
the subcategorisation properties of the verb determine whether a
complementiser analysis is grammatical. That can only be used as a
complementiser when it follows a verb permitting a sentence complement.
This is illustrated by the examples in (4) using the verb insisted, which
permits a sentence complement, and visited, which does not:

4a. Bill insisted that experienced lawyer would be helpful.
4b. Bill insisted that experienced lawyers would be helpful.
4c. Bill visited that experienced lawyer.
4d. *Bill visited that experienced lawyers.

Predictions from the Attractor Framework

In our dynamical systems model, different syntactic environments
correspond to different regions of the representation space, and the local
attractor con�guration in each region re�ects the context-dependent
frequencies of occurrence of the different categorisations. Therefore, a
reader’s bias to interpret that as a complementiser versus a determiner
should be in�uenced by contingent frequencies rather than just by simple
lexical frequencies. In particular, when that is encountered at the beginning
of a sentence, it will be affected by two attractors corresponding to the
complementiser and determiner classi�cations. That will be placed closer to
the that-(Det)-N attractor because “determiner” is the most common
category at the beginning of a sentence, and that occurs more often as a
determiner in this position. This should be re�ected in a strong bias to
process that as a determiner, a prediction that was tested in Experiment 1.
That at the beginning of a sentence, where the determiner reading is more
common, was compared with that after a verb, where the complementiser
reading is more common.

A second prediction follows from the observation that the word that is
nearly always a complementiser when it follows a verb—processing should
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be in�uenced by a strong that-as-complementiser attractor in this
environment. This attractor should be strong enough to in�uence processing
even when that follows a verb that does not permit a sentence complement.
Experiment 2 tested this prediction by contrasting verbs like insisted, which
strongly prefer to take a sentence complement (SC-bias verbs), with verbs
like visited, which do not permit a sentence complement and typically occur
with an NP complement (NP-bias verbs).

Attractor effects that are analogous to those seen for lexical category
ambiguities should also be observed for phrasal ambiguities.  The, and other
determiners, typically introduce an NP-object complement when they
follow a verb. This should result in a strong NP-Det-object attractor. Verbs
that typically take sentence complements should form an Sbar-complement
attractor. However, the NP-object attractor should still in�uence the
processing of the when it follows an SC-bias verb. This prediction was tested
in Experiment 3.

Experiment 1: Contingent Frequency Versus
Simple Lexical Frequency

This experiment examined the ambiguity between that as a complementiser
(e.g. The lawyer said that cheap hotels would be safe) and that as a
demonstrative determiner (e.g. The lawyer said that cheap hotel would be
safe). Reading times to that-adjective-noun sequences when they occurred
at the beginning of a sentence were compared to when they followed an
SC-bias verb. The number on the noun disambiguated that as a
complementiser or a determiner. A plural noun disambiguates that as a
complementiser because demonstrative determiners must agree in number
with the noun they specify, and that is a singular demonstrative. A singular
noun disambiguates that as a demonstrative because the head noun in a noun
phrase without a speci�er (i.e. a bare noun phrase) must be plural. Sample
materials are presented in (5):

5a. The lawyer insisted that cheap hotel was clean and comfortable.
5b. The lawyer insisted that cheap hotels were clean and comfortable.
5c. That cheap hotel was clean and comfortable to our surprise.
5d. That cheap hotels were clean and comfortable surprised us.

Reading times to the noun and the words immediately following should be
shorter when the number of the noun is congruent with the syntactic
category that the reader has assigned to that. When that is interpreted as a
complementiser, reading times should be shorter after a plural noun
compared to after a singular noun. The opposite pattern should be observed
when that is interpreted as a demonstrative. Crucially, the preferred
resolution of that should interact with syntactic environment. In sentence-
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initial position, where that is more typically used as a determiner, reading
times should be shorter after a singular noun compared to a plural noun.
After a verb, where that is more typically used as a complementiser, reading
times should be shorter following a plural noun compared to a singular noun.

Method

Participants. Thirty-six students from the University of Rochester
participated for course credit. All were native speakers of English.

Materials. Four sentences were constructed for each of 20 that +
adjective + noun sequences, by varying two properties of the sentences:
(1) the noun was either singular or plural, disambiguating that as a
demonstrative or as a complementiser, respectively, and (2) the that-phrase
either came at the beginning of the sentence or it followed a verb. In this
experiment, the test sentences used only verbs that typically occur with
sentence complements, and rarely, if ever, permit a noun phrase
complement. Verb-type is varied in subsequent experiments.

Each trial consisted of two sentences, with the second sentence being a
natural continuation of the �rst. On critical trials, the target sentence was
always the �rst sentence in the trial. Four lists were constructed by assigning
each of the four sentences created from a particular that + adjective + noun
sequence to a different list. The target sentences were pseudo-randomly
combined with 42 distractor trials, for a total of 62 trials in each list. At least
one �ller trial appeared before each experimental trial, and conditions were
balanced across the two halves of the stimulus lists.

Procedure. Stimuli were presented one word at a time using a moving
window presentation format ( Just, Carpenter, & Woolley, 1982) on a PC
computer equipped with a Digitry CTS timing board and response box. Each
trial began when the subject pressed the START button on the response
box, causing the entire text to be displayed with each alpha-numeric
character replaced by a dash(–), with normal spacing and punctuation.  The
participants controlled the word-by-word presentation of the stimuli by
pressing the SCROLL button on the response box. Each button press caused
the next word of the text to appear and the previous word to be replaced by
dashes. Comprehension questions followed the sentences on approximately
one-quarter of the trials. Participants responded by pressing YES or NO on
the response box and then received feedback as to whether the answer was
correct. Participants were instructed to read at a normal pace and carefully
enough to answer the questions correctly. The experiment began with seven
practice trials and lasted approximately 35 min.
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TABLE 1
Mean Reading Times (msec) at Speci�ed Word Positions in Experiment 1

Sentence Region

Condition that cheap hotel(s) is/are

Post-verb-that
Sg. noun 414 453 484 492
Pl. noun 409 470 479 433

Initial-that
Sg. noun 399 456 454 438
Pl. noun 381 461 479 563

Results and Discussion

Data from two participants who answered fewer than 80% of the
questions correctly were replaced with data from additional participants.
Mean reading times beginning with that and continuing through the auxiliary
verb (e.g. that cheap hotels is/are) are presented in Table 1. Figure 1 plots the
difference in reading times when the singular noun condition is subtracted
from the plural noun condition. A positive difference indicates that readers
were predominantly in�uenced by the that(Det)-N hypothesis, and a
negative difference indicates that readers were predominantly in�uenced by
the that-as-complementiser possibility. The word after the noun clearly
shows the interaction predicted by the contingent frequency hypothesis: For
sentences with an initial that, reading times were longer following a plural
noun compared to a singular noun, whereas the opposite pattern held when
that followed a verb.

We performed separate analyses of variance on participant and item
reading time means. The factors were list (four lists) or item group (four
groups), sentence type (verb followed by that or initial-that), noun type
(singular or plural) and word position (that, adjective, noun and auxiliary
verb).

The analysis revealed a three-way interaction among sentence type, noun
type and word position [F1(4,128) = 6.02, P , 0.01; F2(4,64) = 9.08,
P , 0.01]. The triple interaction is largely due to reading times to the word
after the disambiguating noun (the auxiliary verb). At this position, there
was an interaction between the number of the noun (noun type) and
sentence type [F1(1,32) = 18.06, P , 0.01; F2(1,16) = 5.86, P , 0.05]. When
that followed a verb, reading times at the auxiliary verb were longer in the
singular noun condition compared to the plural noun condition, though this
effect was only reliable by participants [F1(1,32) = 6.24, P , 0.05;
F2(1,16) = 3.04, P = 0.10], indicating that readers initially assumed that was a
complementiser. The opposite pattern occurred for sentences beginning
with that. Reading times following the singular noun were shorter than those
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FIG. 1. Reading time differences between the plural and singular conditions in Experiment 1
for the region following the word that when it began a sentence (Initial-That) and when it
followed the main verb (Verb-that).

after the plural noun [F1(1,32) = 22.28, P , 0.01; F2(1,16) = 19.26, P , 0.01],
indicating that readers initially interpreted that as a demonstrative
determiner.

These results document the importance of conditional frequency
information in language processing. Whereas the absolute probabilities  of
syntactically ambiguous words are clearly not reliable predictors of
processing dif�culty across all syntactic environments, grammar-derived
conditional probabilities may well be ( Jurafsky, 1996). Two-stage models
are capable of predicting this general situation because they hold that
different sequences of syntactic categories give rise to different �rst-pass
parsing strategies. These results indicate, however, that the choice of the
default parse is predictable from statistical properties of the data people
learn their language from, rather than from structural principles such as
minimal attachment or late closure (Mitchell et al., 1995). Moreover, while a
structural simplicity principle such as minimal attachment correctly predicts
that a sentence-initial that–adjective sequence will be parsed as the
beginning of an NP, rather than as a fronted that complement, it incorrectly
makes the same prediction when a that–adjective sequence follows a verb. In
the attractor model, statistical differences automatically give rise to different
parsing preferences because, in every environment, the most common
pattern is associated with the most powerful local attractor.
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3It is possible that there is another reason for the difference in effect-size observed here: the
sentential subject construction may be restricted to a relatively erudite speaking/writing style
and thus may not occur as frequently in language samples from which typical speakers learn as it
does in the Brown corpus, which we have used to estimate relative frequencies. If this is the case,
our model will still make the appropriate effect-size prediction if trained on a more natural
corpus. But the size difference would then be due simply to a difference in the relative strengths
of the complementiser attractor and the determiner attractor, rather than to the revision-
dif�culty effect just described. It is our suspicion that whatever the natural frequency
relationships are, the revision-dif�culty effect contributes to the high latency, therefore we have
felt it worthwhile to explain how our model captures such effects.

The statistically based attractor-model is also capable of predicting effects
that look very much like structural complexity effects in cases where initial
hypotheses need to be revised. Recall that the congruity effect (the
difference in reading times when that was resolved in its preferred and
unpreferred categories)  in the initial-that condition was about twice the size
of the congruity effect in the verb-that condition (140 vs 65 msec), even
though the frequency asymmetry between the more frequent and less
frequent reading was larger in the verb-that condition (93% complementiser
vs 6% determiner) compared to the initial-that condition (35% determiner
vs 11% complementiser).

In a symbolic parser, this asymmetry can be explained by taking into
account the magnitude of the revision required in each condition. When an
initial that which was originally taken to be a determiner has to be reanalysed
as a complementiser, the noun phrase itself must be reanalysed as the subject
of a subordinate clause. In contrast, reanalysis of that after a verb from a
complementiser to a demonstrative does not affect the overall clause
structure. In the attractor model, the asymmetry arises because a big
structural revision requires the model to make a large jump across the
representation space. This has the effect of it landing in an intermediate
location that is relatively far from the nearest attractor, thereby increasing
processing time. Later we show the details of how this result obtains in our
implemented model.3

Experiment 2: Category-contingent Versus
Verb-speci�c Contingent Frequencies

This experiment examined that when it followed a verb, comparing NP-bias
verbs such as visit that do not permit a sentence complement with SC-bias
verbs such as insisted that are typically used with a sentence complement and
do not permit an NP complement. We predicted that the strong category-
bias for that following a verb to be a complementiser would create a strong
attractor that would make processing that as a determiner dif�cult, even
when it followed an NP complement verb.
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Method

Paricipants. Twenty-eight students from the University of Rochester
participated for course credit. All were native speakers of English.

Materials. Four sentences were constructed for each of 20 adjective +
noun sequences. Examples using cheap hotel(s) are presented in (6):

6a. The lawyer insisted that cheap hotel was clean and comfortable.
6b. The lawyer insisted that cheap hotels were clean and comfortable.
6c. The lawyer visited that cheap hotel to stay for the night.
6d. The lawyer visited those cheap hotels to stay for the night.

Each trial consisted of two sentences, with the second sentence being a
natural continuation of the �rst. On critical trials, the target sentence was
always the �rst sentence in the trial. For the sentence complement verbs, the
verb was followed by that, an adjective, and then either a singular noun,
which disambiguates that as a demonstrative in a that-less S-complement, or
a plural noun, which disambiguates that as a complementiser. For the
NP-bias verbs, the verb was either followed by that, an adjective and a
singular noun, disambiguating that as a demonstrative, or by those followed
by an adjective and a plural noun. Those was included as a referent-
presupposing control. It could be argued that processing dif�culty at that
after an NP-bias verb re�ects the fact that it is odd to use a de�nite
determiner without �rst having introduced a referent. We used the plural
those rather than the singular this as the control because in colloquial speech
this is often used to introduce a referent despite its de�niteness (e.g. This guy
walked in and ordered whiskey).

Four lists were constructed by assigning each of the four sentences created
from a particular adjective + noun sequence to a different list. The target
sentences were pseudo-randomly combined with 42 distractor trials, for a
total of 62 trials in each list. At least one �ller trial appeared before each
experimental trial, and conditions were balanced across the two halves of the
stimulus lists.

Procedure. The procedure was the same as in Experiment 1.

Results and Discussion

Data from two participants who answered fewer than 80% of the
questions correctly were replaced with data from additional participants.
Mean reading times beginning with that and continuing through the two
words that followed the noun (e.g. that cheap hotels is/are clean) are
presented in Fig. 2.
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FIG. 2. Mean reading times following NP-bias and SC-bias verbs in Experiment 2.

The results can be understood most clearly by considering the NP-bias
verbs and the SC-bias verbs separately. For the NP-bias verbs, reading times
were considerably longer to that than to those at the determiner (that or
those) [F1(1,24) = 5.31, P , 0.05; F2(1,16) = 5.80, P , 0.05] and at the
following adjective [F1(1,24) = 23.59, P , 0.01; F2(1,16) = 8.12, P , 0.05].
Thus readers had dif�culty processing that as a demonstrative,
demonstrating effects of both the category-leve l bias and the
subcategorisation properties of the speci�c verb (i.e. that after a verb is
usually a complementiser and these verbs cannot take a complementiser).
The results for the sentence complement verbs replicated those found in
Experiment 1. Readers initially interpreted that as a complementiser rather
than as a demonstrative determiner. Reading times after a singular noun
(e.g. at was) were longer compared to reading times after a plural noun (e.g.
at were) [F1(1,24) = 4.03, P = 0.056; F2(1,16) = 5.16, P , 0.03].

The prediction that reading times to that would be longer when it followed
an NP-bias verb compared to when it followed an SC-bias verb was clearly
con�rmed. Reading times at that and at the following adjective were clearly
longer after an NP-bias verb than after an SC-bias verb [F1(1,24) = 8.0,
P = 0.01; F2(1,16) = 6.15, P , 0.03 at that; and F1(1,24) = 8.77, P , 0.01;
F2(1,16) = 2.98, P = 0.1 at the adjective].

The results demonstrated a robust category contingent effect that was not
eliminated by verb-speci�c subcategorisation information. That is typically a
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4N-gram models (e.g. Brown et al., 1992) and grammar-based conditional probability models
(e.g. Jurafsky, 1996) are roughly of this sort.

complementiser when it follows a verb and, consequently, there is a strong
bias to interpret it as a complementiser in this environment, even when it
follows a verb that cannot take a sentential complement. One could ask, of
course, whether these long reading times are due simply to the low rate
of occurrence of the word that after NP-bias verbs—after all, the point of
Experiment 1 was to show that reading times are strongly in�uenced by
context-dependent relative frequencies.  However, this hypothesis
incorrectly predicts that reading times at those following an NP-bias verb
would be as long or longer than reading times at that in the same
environment (the frequency of those in this environment is about 30% of the
frequency of that). Instead, they are signi�cantly shorter. Thus the
processing dif�culty at that cannot be attributed to simple differences in
context-dependent expectations. These results pose a problem for any
model that simply uses conditional probabilities  to assign reading times.4

Experiment 3: Contingent Frequencies and
Complement Type

The goal of this experiment was to determine whether contingent
frequencies also in�uence phrasal ambiguity resolution. In addition to
replicating the NP-bias verb followed by that and the SC-bias verb followed
by that conditions from Experiment 2, we included conditions in which a
noun phrase with the determiner the (the-adjective-noun) followed either an
NP-bias or an SC-bias verb.

It is well-established that readers have a strong bias to parse a noun phrase
after an NP-V sequence in a main clause as an NP object complement, as in
(7a), rather than as the subject of a sentence complement, as in (7b). This
bias is re�ected in long reading times when the reader encounters the
disambiguating verb phrase in a that-less sentence complement [e.g. would
cause in (7b)], which disambiguates the preceding NP (the angry man) as the
subject of the sentence complement rather than the object of the verb
warned.

7a. John warned the man about the cheap hotel.
7b. John warned the angry man would cause trouble.
7c. John insisted the angry man would cause trouble.

Now, consider sentence (7c), in which a that-less sentence complement
follows an SC-bias verb. A number of recent studies have found that readers
have little or no processing dif�culty at the verb phrase in the complement
(Garnsey et al., 1995; Schmauder & Egan, 1995; Trueswell et al., 1993; but cf.
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Ferreira & Henderson, 1990). However, some of these studies have reported
increased reading times at the noun phrase (e.g. the angry man) compared to
noun phrase complements with a that, or noun phrases after NP-biased
verbs. In a two-stage model, these effects at the NP would be interpreted as
rapid revision effects in a system that initially ignores lexically speci�c
structure. However, in an attractor-based system, this dif�culty re�ects the
joint effect of two attractors: the Verb-NP-Det attractor and the Verb-S-
Comp-that attractor. Thus it is another case of representational
intermediacy, due to competing attractors.

Method

Participants. Twenty-eight students from the Univesity of Rochester
participated for course credit. All were native speakers of English.

Materials and Procedure. Four sentences were constructed for each of
20 adjective + noun sequences. Examples are presented in (8):

8a. The lawyer insisted that cheap hotel was clean and comfortable.
8b. The lawyer insisted the cheap hotel was clean and comfortable.
8c. The lawyer visited that cheap hotel to stay for the night.
8d. The lawyer visited the cheap hotel to stay for the night.

The �llers, counterbalancing procedure and the experimental procedure
were the same as those used in Experiment 2.

Results and Discusssion

Data from four participants who answered fewer than 80% of the
questions correctly were replaced with data from additional participants.
Mean reading times beginning with that or the and continuing through the
two words that followed the noun (e.g. that cheap hotel is clean) are
presented in Fig. 3.

There was a three-way interaction between the type of verb (SC-bias or
NP-bias), type of determiner (that or the) and the position of the word
[F1(3,72) = 4.50, P , 0.01; F2(5,80) = 4.32, P , 0.01]. This result can be
understood most clearly by considering several crucial comparisons.
Reading times following that were again longer following NP-bias verbs than
SC-bias verbs, replicating the pattern found in Experiment 2. In this
experiment, however, the effect did not show up until the adjective
[F1(1,24) = 9.84, P , 0.01; F2(1,16) = 18.25, P , 0.01].

Reading times were longer at the (singular) noun after an SC-bias verb
with a that compared to an SC-bias verb with a the [F1(1,24) = 6.89, P , 0.02;
F2(1,16) = 4.10, P = 0.06], and at the auxiliary verb [F1(1,24) = 6.55,
P , 0.02; F2(1,16) = 16.22, P , 0.01]. This result indicates that readers had a
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FIG. 3. Mean reading times following NP-bias and SC-bias verbs in Experiment 3.

bias to interpret that as a demonstrative until they encountered the singular
noun, replicating the result found in Experiment 1. The full timecourse of
the that effect following NP-bias verbs can be seen by comparing the NP-bias
that and the NP-bias the conditions. Reading times in these conditions
diverge at the adjective and converge after the noun.

Reading times were 25 msec longer at the determiner following SC-bias
verbs than NP-bias verbs [F1(1,24) = 5.53, P , 0.05; F2(1,16) = 2.23,
P = 0.15], and 20 msec longer at the adjective [F1(1,16) = 3.06, P , 0.10;
F2(1,16) = 2.23, P = 0.19]. Although these results are only marginally
reliable, a similar pattern was reported by Trueswell et al. (1993) and
Garnsey et al. (1995). Furthermore, Experiment 4 replicates this effect with
a larger sample of verbs, as will be seen later. The reason for the high
variability across items will become clearer once we begin to explore the
details of the attractors for this environment constructed by our simulations.

In sum, the results of this experiment further illustrate the interactions
among attractors that we observed in Experiment 2. Reading times were
again longer in the that condition following NP-bias verbs than SC-bias
verbs, replicating the effect observed in Experiment 2. In addition, reading
times were longer at the and the following adjective after SC-bias verbs
compared to NP-bias verbs. While this effect was quite small, it was
predicted to arise from competition between the NP-Det-object attractor
and the Sbar-comp attractor at the. NP-bias verbs followed by the are easy to
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process because all the evidence favours placing the processor near the
NP-object attractor. But in cases where an SC-bias verb is followed by the,
the evidence from the verb favours the sentence complement attractor and
the evidence from the word the favours the NP-object attractor. Again, the
processor ends up in an intermediate position, far from both attractors, and
thus gravitation time is high. In the next section, we diagram the attractors
and show the relevant intermediate locations in our implemented model.

Summary of Contingent Frequency Effects

Four contingent (conditional) frequency results emerged from Experiments
1–3:

1. That at the beginning of a sentence was initially taken to be a
demonstrative determiner, whereas that after a verb was taken to be a
complementiser. These biases re�ect the contingent frequencies in the
language, as determined by corpus analyses, and were interpreted as being
due to the relative strength of the that-complement and that-Det attractors in
the two environments.

2. The dif�culty of revising the interpretation of a sentence-initial that
from a determiner to a complementiser was greater than revising the
interpretation of a post-verbal that from a complementiser to a determiner.
We hypothesised that this asymmetry arises because bigger structural
revisions generally require the model to make large jumps across the
representation space, resulting in it landing in an intermediate location that
is relatively far from the nearest attractor.

3. Readers experienced processing dif�culty when that followed a verb
that did not permit a complementiser. Thus the category-based bias for that
as a complementiser when it followed a verb still exerted large effects even
when it ran counter to unambiguous verb-speci�c information. This was
hypothesised to be a result of the strong effects of a that-complement
attractor after a verb.

4. There was a bias to parse an NP beginning with the determiner the
following a verb as an NP complement. This bias caused processing dif�culty
for NPs that followed even those verbs that nearly always occur with
sentence complements. These effects were attributed to the strength of the
NP-Det-object attractor.

It is important to note that the contingent frequency effects that are
hypothesised to arise from the in�uences of attractors cut across different
linguistic levels or grains. For example, results 1 and 3 show that in resolving
a lexical category ambiguity, the processing system is sensitive to category-
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contingent frequencies. Result 4 shows that phrasal ambiguities are also
sensitive to contingent frequencies.

IMPLEMENTING A DYNAMICAL SYSTEM

We earlier outlined how concepts from dynamical systems theory can be
used to model the general correlation between ambiguity and increases in
reading times. The central observation  was that a dynamical system is
dominated by the properties of a single attractor when it is suf�ciently near
to it, but it can show the simultaneous in�uences of several attractors when it
is in a more intermediate location. This motivated letting attractors
correspond to syntactic categorisations and letting different cases of lexical
items in context vary according to whether they put a dynamical processing
system close to one attractor or intermediate between several. We now
describe an explicit model implementing these ideas and show how the
model generates the pattern of the reading time results presented in
Experiments 1–3.

Implementation

Implementing the model requires: (1) creating a similarity-based
representational space with appropriate attractors that places the input
somewhere in the representational space, and (2) implementing an
algorithm that maps the attractor dynamics onto reading time.

The representational foundation of our dynamical model is its similarity-
based representation space. We de�ne a visitation set to be a set of points in
the representation space visited by the processor while it processes a large
corpus approximating natural usage.

Network Architecture

To create empirically testable representation spaces and visitation sets,
we used the augmented simple recurrent network shown in Fig. 4. This
network has exactly the same relaxation dynamics as the architecture of
Elman’s (1990, 1991) syntactic structure experiments, in which there was
only one copy of the hidden layer. But there is a slight difference with
Elman’s device in the learning: at each time step, error signals from all pairs
of successive hidden layers are added to the error signal under
backpropagation. This is the technique known as “backpropagation through
time” described in Rumelhart, Hinton and Williams (1986) and Pearlmutter
(1995), with the proviso that only three prior time steps of hidden unit
activation were taken into account. Summing error signals over three pairs
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Activation functions:

Hidden layer t:

1
f(neti) =

1 + eneti

Hidden layers t  1, t  2, t  3:

The activation pattern on hidden layer l  1 is the same as the activation pattern that
appeared on hidden layer l when the previous input was presented (for l P {t, t  1, t  2}).

Output units:

eneti

f(neti) =
S k enetk

where k ranges over output units and

neti = bi + S wijaj

j

where bi is the bias on unit i, aj is the activation of unit j, and wij is the weight from unit j to unit i.

Cost function:

C = S tkln ak

k

where k indexes output units, ak is the activation of unit k, and tk is the target for unit k. The
weights were adjusted every time a new word was presented to the network.

FIG. 4. The recurrent connectionist network that forms the core of the attractor-based model.
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of hidden unit layers instead of just one (as in Elman’s learning procedure)
makes it a little easier for the network to learn long-distance dependencies ,
but does not otherwise seem to change the types of representations
discovered by the network. It would, in fact, be necessary to sum error
signals over all previous time steps to be certain of the convergence results
normally associated with the backpropagation algorithm. The method
employed here, using only a few recent time steps, sometimes referred to as
“truncation of the gradient”, is not guaranteed to converge, but it always
achieved stability in the current simulations. For purposes of clarity, we will
only use the terms “SRN” and “simple recurrent network” to refer to
networks with architectures like those of Elman (1990, 1991), in which
backpropagation was carried out through only one prior time step.

As in Elman’s model, the inputs were always taken to be localist
representations of words: for each word, one unique bit was on, all the other
inputs were off. The words were taken in sequence from a corpus. The
network’s task was to predict on the output layer what word was coming next
at each point. Since the optimal target outputs under this set-up form a
probability distribution, the output units employed the softmax activation
function. The hidden units employed the �xed sigmoid activation function.
The weights of the network were adjusted by backpropagation of the error
signal through the network for the feedforward connections and through
time for the recurrent connections (see Rumelhart et al., 1986). In the three
simulations described below, we used the approximation of the error
gradient that resulted from truncating the recurrent backpropagation after a
�xed number of time steps (see Pearlmuter, 1995, for a discussion).

To generate training data for the models described in this section, we used
probabilistic �nite-state grammars which approximated those properties of
English that were relevant in each experiment. We trained the network
model on the output of the grammar until it seemed qualitatively to have
learned all the distinctions encoded by the grammar and its average error
had come near an asymptote.

The Dynamical Processor

We used the network to de�ne a dynamical system for sentence
processing. First, we created a visitation set by using the training grammar to
generate a sample corpus of n words, feeding this corpus to the network with
learning turned off, and recording the set of n hidden unit locations visited
during the presentation of the sample. We interpreted this set of n points as a
set of �xed bodies, all of equal mass, at locations x

®
1 . . . x

®
n, and de�ned the

following dynamical behaviour for a movable test body at any point, x
®

, in the
space:
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5Saddle points are �xed points which attract trajectories from some regions of the space and
repel them into others.

6This is roughly like assuming that the test body can never get any closer to a �xed body than
rmin, although it does not treat the complex interactions at close range of bodies composed of
real matter.

dx
®

= m S (x
®

i  x
®

)

dt
i = 1

r p
i

n

where r is the length of (x
®

i  x
®

) and m is the mass of each �xed body.
The position of the movable test body at any time corresponds to the state

of the processor. Each time the system gets a new word, the test body is
placed in a new starting position in the representation space and it must
gravitate to an attractor before the next word can be processed. When p = 2,
this system is like a Newtonian gravitational system with a test body of mass
1 and velocity equal to 0 at in�nite distance from the origin. The value of m
determines how quickly the system travels along its trajectories, but varying
it over the positive real numbers does not qualitatively affect the behaviour
of the system. The value of n does affect the behaviour of the system in the
sense that if one samples the space too sparsely, then the cluster structure
does not re�ect the structure of the grammar. It seemed to be necessary to
set n to a higher value in the simulation of Experiment 1 than in the
simulation of Experiments 2 and 3. We do not know why this is at present.
The value of p determines the number of attractors in the system: if p = 0,
then the system has only one attractor located at the centre of mass of all the
�xed bodies; if p is greater than 0, there are multiple attractors, one at each
�xed body, and there is a complex network of saddle points located at the
centres of masses of dense clusters.5 The implemented system (see below) is
sensitive to the value of p in an important way and so we had to tune this
parameter carefully.

To implement this dynamical system in a practical fashion, we made
several simpli�cations. The attractors de�ned by equation (1) are singular
points—the velocity of the test body goes to in�nity at them and gets very
large near them. To smooth out these singularities,  we replaced r with rmin

whenever r was less than rmin.
6 This put a cap on the in�uence that any one

�xed body could have on the test body. It also had the effect of transforming
the saddle points at cluster means into attractors. Thus attractors
corresponded to behaviours that were classi�ed as similar by the SRN. Note,
however, that “cluster” and “classi�ed as similar” are not precise terms.
Indeed, the con�guration of attractors in this implemented system varied as
the value of p was changed. Crudely speaking, a smaller value of p implies
fewer attractors and a larger value of p implies more attractors. We should
note the relationship between p and the number of attractors is non-linear
and there are ranges in which changing the value of p has no effect on the 
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7We chose not to use a more exact integration technique like 4th order Runge-Kutta because
such a method was, computationally, extremely costly and seemed to make little difference in
the outcomes that concern us here.

8It turned out to work well to use rmin as this small value.

topology of the system. In other words, this variation is typical of bifurcation
pro�les in complex dynamical systems (see Strogatz, 1994, for an
introduction).

The exponent p can thus be viewed as a “grain size” parameter, related to
the grain size discussed by Mitchell et al. (1995). We adjusted this parameter
in each simulation to make the set of attractors line up nearly perfectly with
the set of states distinguished by the grammar. This important �exibility
reveals a certain stipulativeness of the model, but it is signi�cant that the
correspondence was near perfect in the two simulations in which the states
distinguished by the grammar were easily identi�ed [the simulations of
Experiments 1 and (2 and 3)], since there are many computation systems
which the network + gravitation model cannot emulate no matter what value
of p is used. With p set to achieve this near perfect line-up, we nevertheles s
saw in�uences of constraints at different traditional grains (lexical and
phrasal), so the model achieved the desirable result of letting these levels
interact without losing predictive power.

We used the simplest integration technique (i.e. Euler’s method) to �nd
approximations of the system’s trajectories: take the change in the system’s
state at x to be D t(dx

®
/dt) for D t, a small positive constant.7 For simplicity, we

fold the two proportionality constants, m and D t, into one, m = m D t in the
remaining discussion. The revised system is shown in equation (2):

D x
®

= m S (x
®

i  x
®

)

i = 1
r p

i

n

Since the attractors of this system can be either complex cycles or stable �xed
points, we detected them by looking for places where either the trajectory
changed direction by more than 90 8 in one time step or where the velocity
slowed to below a small value.8 To model reading times for a sentence S
consisting of words wi, w2, . . ., wk, we presented S one word at a time to the
RCN and recorded the hidden unit locations h

®
1, h

®
2, . . ., h

®
k associated with

each word presentation. The predicted reading time at word wk was then
taken to be the number of time steps it took the system described in equation
(2) to gravitate from h

®
k to an attractor.

Simulation of Experiment 1

We now describe a simulation of the central results of Experiment 1.
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TABLE 2
Corpus-generating Grammar for Experiment 1 Simulation

0.90 S : Det[sg] N[sg] VP[sg] p
0.10 S : that N[pl] V[0][pl] V[AdjP][sg] AdjP p

0.60 VP[sg] : V[0][sg]
0.30 VP[sg] : V[S 9 ][sg] that N[pl] V[0][pl]
0.10 VP[sg] : V[S 9 ][sg] Det[sg] N[sg] V[0][sg]

[Zipf ] V[0][sg] : 0.44 sings, 0.22 stops, 0.14 talks, 0.11 whistles, 0.09 leaps

[Zipf ] V[0][pl] : 0.44 sing, 0.22 stop, 0.14 talk, 0.11 whistle, 0.09 leap

[Zipf ] V[S 9 ][sg] : 0.34 thinks, 0.17 agrees, 0.11 insists, 0.09 wishes, 0.07 hopes,
0.06 remarks, 0.05 pleads, 0.04 speculates, 0.04 doubts, 0.03 hints

[Zipf ] V[AdjP][sg] : 0.44 is, 0.22 seems, 0.14 looks, 0.11 sounds, 0.09 becomes

[Zipf ] AdjP : 0.44 funny, 0.22 strange, 0.14 good, 0.11 tolerable, 0.09 surprising

[Zipf ] Det[sg] : 0.44 the, 0.22 that, 0.14 a, 0.11 this, 0.09 one

[Zipf ] N[sg] : 0.34 woman, 0.17 man, 0.11 dog, 0.09 cat, 0.07 marmot, 0.06 girl, 0.05 boy,
0.04 artist, 0.04 journalist, 0.03 sailor

[Zipf ] N[pl] : 0.34 women, 0.17 men, 0.11 dogs, 0.09 cats, 0.07 marmots, 0.06 girls,
0.05 boys, 0.04 artists, 0.04 journalists, 0.03 sailors

TABLE 3
Comparison of Relative Frequencies in the Brown Corpus and Simulation 1 Grammar

(Brown Corpus Statistics from the Penn Treebank)

Type of that Brown Corpus Simulation Grammar

Sentence-initial compl. vs det. 25% 34%
Post-verbal compl. vs det. 96% 93%

Training the Network

The grammar used in the simulation of Experiment 1 is shown in Table 2.
The grammar generated the word that in the four different kinds of
environments that were the focus of Experiment 1: determiner versus
complementiser in sentence-initial position and determiner versus
complementiser in post-verbal position. The relative frequencies within
these environments did not correspond directly to estimates of frequencies
in natural usage, but they were biased in the same direction relative to 50%
(see Table 3). We chose simulation values that were less extreme than the
corpus values to facilitate training the network. Later, we explore a network
trained from an actual natural language corpus with more representative
frequencies.

The relative frequencies of different lexical items within classes were set
according to “Zipf ’s Law”, which holds that a rank versus frequency plot of
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9In other words, if one orders (ranks) the vocabulary elements by their frequencies and then
numbers them sequentially with the integers 1, 2, 3, and so forth, a plot of these integers versus
the corresponding frequencies forms a hyperbola. This implies that if one plots the log of rank
versus the log of frequency, the result should be a straight line.

10The Brown corpus rank-frequency plots of lexical classes seem, in fact, to be slightly biased
in favour of lower frequency elements (i.e. the highest frequency elements seem to be missing
from the tabulation), so a log-log plot is not linear but bowed slightly upward in the middle. We
have found that distortions of this sort and even more radical divergence make little difference
in the qualitative outcome of the simulation.

the vocabulary elements drawn from any large natural language corpus
forms the cusp of a hyperbola (Zipf, 1949).9 The law has been con�rmed by
Zipf and his successors as a fair approximation for numerous corpora in a
wide range of languages. We have also observed that it gives a reasonable
approximation within several of the main lexical categories in the Brown
corpus (e.g. noun, verb, adjective, adverb, determiner) and therefore used it
to assign frequencies to lexical items in the grammar.10

In the grammar used for simulating Experiment 1, there was a perfect
correlation between whether that was used as a complementiser or
determiner and whether it was followed by a plural noun or a singular noun.
Thus the grammar generated sentences like That dogs bark is undeniable
and Josiah knows that dogs bark, and sentences like That dog barks and
Josiah knows that dog barks. However, it never generated sentences of the
form That a dog barks is undeniable or Josiah knows that a dog barks. We
decided not to include the latter types of sentences because recurrent
networks have dif�culty learning long-distance dependencies, without
special training procedures (e.g. Elman, 1993). Creating a categorical
relationship between the syntactic category of that and the number of the
subsequent noun made it easier for the network to learn the long-distance
dependency between the way that is used locally and the type of
environment its clause occurs in. These unrealistic assumptions about the
corpus may introduce some biases in the simulation which distort its
correlation with the reading time data (i.e. the network gets unequivocal
evidence that sentence initial that is a complementiser when it encounters a
plural noun, whereas people do not). However, this distortion should not
interfere with the expected effect of frequency contrasts on reading times.

Reading Time Predictions

To train the network for Experiment 1, we generated sentences at random
using the Experiment 1 grammar and fed them to the network one word at a
time. Thus there was not a �nite training set but an open-ended sequence,
and it was not useful to evaluate the total error over all training examples to
determine the network’s performance. For the simulations of Experiments
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1, 2 and 3, the training grammar was a �nite-state grammar with only a few
states. Therefore, we were able to determine when the network was making
all the right distinctions simply by inspecting its outputs in all the relevant
conditions. We also measured error quantitatively as a weighted sum over
current and preceding pattern errors [Error(t) = 0.99*Error(t   1) +
0.01* Z C Z , where t indexes the time step and C is the error on the current
pattern (see Fig. 4)] and made sure that this error asymptoted before we
stopped training.

We used a learning rate of 0.03. For four out of four initial weight
con�gurations, the Experiment 1 network learned all the distinctions in the
training grammar by the time at least 400,000 words had been presented. In
fact, it typically learned the distinctions in less than 100,000 presentations,
but we ran the training longer to allow the hidden unit clusters to become a
bit more distinct. We studied the representations for all four training
episodes and found them to be essentially similar. The results reported here
are based on one typical episode.

After a small amount of experimentation with parameter values, we set
n = 6000, p = 3.5, rmin = 0.01 and m = 0.00005 for the simulation of
Experiment 1. Figures 5 and 6 compare the human reading time data in
Experiment 1 to the simulation results. The pattern of reading times
generated by the model is similar to that observed in Experiment 1. The
main difference is that the bulk of the processing dif�culty occurs about a
word later in the human data than in the simulation results. This may be
because effects are often delayed by a word or two in self-paced reading. It
also may be that the unrealistic simplicity of the training grammar
contributes to the effect. For example, the fact that the number marking on a
noun following the word that gives a categorical signal in the grammar as to
the relation of the noun to the word that, means that the model encounters
clear, unexpected information earlier than humans do (after all “That
marmots . . .” might turn out to be “That marmots’ den . . .” in English but
not in the simulation grammar). These effects may weaken the synchrony of
human and model results, but the source of the reading time contrasts is still
plausibly the same in humans and in the model.

Why does the model make the appropriate predictions? The gravitational
dynamical system for this simulation has three main attractive regions,
corresponding to the three major types of categories represented in the
grammar: verb, determiner and noun. Each of these regions contains several
distinct attractors, which correspond to the different syntactic roles the
words in each category can play. Since the effect of interest shows up on the
nouns in this simulation, it is revealing to take a close-up look at the noun
region.

Figure 7 shows (as black dots) the �xed bodies in the noun region in two
dimensions. These dimensions are the �rst and second principal
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FIG. 5. Comparison of human participant results (a) and simulation results (b) for
Experiment 1, initial that condition.
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FIG. 6. Comparison of human participant results (a) and simulation results (b) for
Experiment 1, post-verbal that condition.
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11The �rst two components account for 80 and 15% of the variance in the noun subportion of
the visitation set, respectively, so Fig. 7 shows nearly all of the structure of this subset.

12Note that the generating grammar contains only subject nouns, no object nouns or nouns in
other syntactic positions.

FIG. 7. A portion of the visitation set for simulation 1 with labelled clusters representing
nouns in different syntactic environments.

components, respectively, of the points corresponding to nouns.11 Clusters
of points within this region correspond to distinct grammatical situations and
are labelled accordingly. For example, the cloud of points labelled
“that[Det] N, Initial” corresponds to nouns that occurred after the word that
sentence-initially, where that was functioning as a determiner (thus the noun
was singular). The cloud of points labelled “Det N, Initial” corresponds to
nouns that occurred after some determiner other than that in sentence-initial
position. The circles identify the three attractors in the noun region, which
may be characterised as subject of an embedded sentence (“that[Comp] N,
Post Verb”), subject of a sentential subject (“that[Comp] N, Initial”), and
head of the subject of the matrix sentence (“Det N, Initial”).12 If the test
body of the dynamical system is placed anywhere in the depicted region, it
will gravitate to one of the three circled attractors. The sequences of
numbers in the diagram show sample trajectories of the test body: each
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13The parts of the trajectory which are nearly at the attractor are not labelled so as to avoid
confusing overlaps of labels.

trajectory starts at the point labelled “1” and proceeds in order of the
sequence, ending �nally at the attractor towards which it is heading.13

The three attractors in Fig. 7 correspond to the important syntactic
distinctions that the grammar makes between nouns: there can be statistical
differences between the behaviours of nouns within the same attractor
basin, but these tend towards zero as larger and larger samples of the
language are examined. In this sense, the dynamical model makes explicit
the “emergent” organisation of the neural network representation which
gives rise to syntactic constraints on processing. Moreover, although the
syntactic distinctions between nouns made here are not the same ones that a
linguist would choose for parsing the real language, English, if a linguist were
studying the output of the training grammar, then the distinctions formed by
the dynamical model would probably be the distinctions of choice.

The cluster arrangement in this region is robust under repeated training
episodes with different random starting weights in the RCN. In four
successive simulations, the same pattern appeared. In fact, the locations of
the clusters are easy to predict based on the principle that locally ambiguous
constructions receive intermediate representations: there are three clusters
corresponding to the three distinct noun-states determined by the
grammar—these are the clusters corresponding to the three attractors just
mentioned. The remaining clusters correspond to non-distinct states which
share features with other states: the “that[Det] N, Initial” cluster is near the
subject determiner attractor but is displaced in the direction of the sentential
subject region; the “Det N, Post Verb” cluster is near the subject determiner
attractor but is displaced in the direction of other post-verbal structures; the
“that[Det] N, Post Verb” cluster is near the subject determiner attractor but
is displaced simultaneously in the direction of other post-verbal structures
and in the direction of the embedded sentence structure (also introduced by
the word that).

We can see from the trajectories shown in Fig. 7 how the model makes
appropriate predictions. A singular noun following sentence-initial that
(“that[Det] N, Initial”) is processed quickly because it starts from a cluster
right next to the powerful matrix subject attractor, which rapidly pulls it in.
The matrix subject attractor is powerful because of the high frequency of
matrix subjects. A plural noun following sentence-initial that (“that[Comp]
N, Initial”) takes longer to process because it lands near the much weaker
sentential subject attractor. The sentential subject attractor is weaker
because of the comparatively low frequency of sentential subjects. This
contrast gives rise to the gravitation time difference at the noun shown in
Fig. 5.
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On the other hand, a plural noun following post-verbal that (“that[Comp]
N, Post Verb”) is processed reasonably quickly because its trajectory starts
very near the embedded subject attractor. By contrast, a singular noun
following post-verbal that (“that[Det] N, Post Verb”) takes somewhat
longer to process, even though it is drawn in by the powerful subject
attractor, because it starts quite far away from this attractor.

Two features of the dynamical system contribute to the correct
predictions: (1) A strong attractor pulls the test body more quickly than a
weak attractor—this predicts the general correlation between the frequency
of a construction and its processing ease. (2) Gravitation takes longer if the
starting point of a trajectory is close to an attractor rather than far
away—this gives rise to the inverse correlation between the ambiguity of a
construction and its processing ease. Thus the attractors both play the role of
traditional categorical sentence fragment parses, and also interact to make
appropriate predictions about the roles of frequency and similarity which
constraint-based models have emphasised. Since the attractors develop
through the learning process of the RCN, they are appropriately thought of
as the “emergent properties” which constraint-based researchers have
hypothesised to account for syntactic effects within a lexicalist framework
(e.g. Juliano & Tanenhaus, 1994). It is important to note that attractors
corresponding to higher level phrasal categories emerge even though the
system is lexicalist in nature. This is important given that critics of both
lexicalist and constraint-based models have often appealed to category-level
biases that precede lexical heads as evidence against these approaches. Our
results show that this type of argument is misleading.

The fact that the emergent properties are related to the learning process of
the RCN raises the question of why we did not simply choose to work with
the dynamical properties of the RCN. The RCN itself is a dynamical system
in two senses: the recurrent connections in the hidden layer give rise to
dynamical structures (cf. Rodriguez, 1995; Wiles and Elman, 1995) and the
learning process is dynamical. We have chosen to adopt a separate
dynamical system to interpret the representation adopted by the RCN
because it seemed like the best way to capture the key conceptual
generalisations we observe in processing. We chose not to work with the
dynamical structures associated with the recurrent connections of the RCN
because we did not �nd these useful for our purposes (a more detailed
discussion of this point follows later). We also chose not to work directly
with the dynamics of learning. We believe, however, that there may be an
interpretation of the dynamics of learning which corresponds closely to the
interpretation we create using the gravitational model: there are locations in
the representation space associated with important categorical distinctions,
and the representations assigned to speci�c items migrate towards these
locations during the course of training. However, it is dif�cult to analyse



ATTRACTORS AND SENTENCE PROCESSING 243

TABLE 4
Corpus-generating Grammar for Experiments 2 and 3 Simulation

1.00 Sroot : S p

1.00 S : NP VP

0.67 VP : VP[NP]
0.33 VP : VP[S 9 ]

0.67 VP[NP] : V[NP] NP
0.33 VP[NP] : V[NP]

1.00 VP[S 9 ] : V[S 9 ] S 9

0.67 S 9 : that S
0.33 S 9 : S

1.00 NP : Det N

[Zipf ] Det : 0.44 the, 0.22 a, 0.14 which, 0.10 that, 0.10 those

[Zipf ] V[NP] : 0.34 called, 0.17 followed, 0.11 pulled, 0.09 caught, 0.07 pushed, 0.06
loved, 0.05 visited, 0.04 studied, 0.04 tossed, 0.03 grabbed

[Zipf ] V[S 9 ] : 0.34 thought, 0.17 agreed, 0.11 insisted, 0.09 wished, 0.07 hoped, 0.06
remarked, 0.05 pleaded, 0.04 speculated, 0.04 doubted, 0.03 hinted

[Zipf ] N : 0.34 woman, 0.17 man, 0.11 dog, 0.09 cat, 0.07 blouse, 0.06 hat, 0.05 cake,
0.04 ball, 0.04 watch, 0.03 cypress

these properties of the learning dynamics because the locations of the
attractors are constantly changing. Further analysis of learning in this light
may ultimately be helpful and we see this project as laying a foundation for
such work.

Simulations of Experiments 2 and 3

Since the important grammatical environments in Experiments 2 and 3 did
not require learning of the long-distance dependencies  involved in
Experiment 1, we used a more repesentative grammar, presented in Table 4.
The network had 36 inputs, 5 hidden units and 36 outputs, and 3 time steps
were unfolded in time during learning (Pearlmutter, 1995; Rumelhart et al.,
1986).

The grammar for simulations 2 and 3 encodes the relevant overall bias in
favour of assigning a complementiser interpretation in V + that sequences
(Table 5, Line 1). The grammar assumes that the complementiser is present
(i.e. not deleted) after about 70% of verbs introducing a sentence
complement. This corresponds to the pattern found in the Treebank corpus
once one eliminates sentence complements with nominative pronouns,
which typically occur without complementisers (Table 5, Line 3). This gives
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TABLE 5
Comparison of Relative Frequencies in the Brown Corpus and the Training Grammar for

Simulations 2 and 3 (Brown Corpus Statistics from the Penn Treebank)

Brown Corpus Simulation Grammar

1. Complementiser interpretation of V + that 93% 80%
2. Relative frequency of NP complements vs

sentential complements
79% 67%

3. Relative frequency of that-deletion in sentential
complements (not counting cases in which the
embedded subject is a nominative pronoun)

, 50% 33%

rise to a strong complementiser attractor, which plays an important role in
Experiment 2. The grammar also makes the realistic assumption that there is
a high frequency of noun phrase complements in comparison to sentence
complements (Table 5, Line 2). This gives rise to a strong direct object
attractor, which plays a central role in Experiment 3. The grammar includes
an option of using an NP-verb intransitively. This is not unrealistic, but in
this case, the main point of including this feature was to facilitate learning
the distinction between subjects and objects.

To train the network for simulations 2 and 3, we generated sentences at
random using the Experiment 2/3 grammar and fed them to the network one
word at a time. Again, the training grammar is a �nite-state grammar with
only a few states, so we were able to determine when the network had
achieved satisfactory performance by inspection. We also checked to make
sure the error measure described on p. 237 had asymptoted.

We used a learning rate of 0.03. For four out of �ve initial weight
con�gurations, the network learned all the distinctions in the training
grammar by the time at least 100,000 words had been presented. This
grammar was a little harder to learn than the Experiment 1 grammar
because of the dependency involved in making the subject/object
distinction, and when the network failed, it was always because the network
failed to clearly distinguish subjects and objects. We trained several of the
successful networks up to the 400,000th word presentation to achieve tighter
clustering of the hidden unit representations. In every such case we
examined, a similar representation pattern emerged. The results reported
here are based on one typical case.

For these experiments, we set n = 2000, p = 2.4, rmin = 0.01 and m = 0.0002
in the gravitational model. In this case, the parameter p needed to be
�ne-tuned to make a crucial distinction, which we will discuss shortly.

Figure 8 provides a comparison between the reading time data and the
simulation results for the contrast between those and that and following an
NP-complement verb (Experiment 2). Figure 9 compares the human and
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FIG. 8. Reading time at that compared with reading time at those following an NP-only verb.
Comparison of human participant results (a) and simulation results (b) for Experiment 2.
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FIG. 9. Reading time at the following the verb: pure NP complement verbs versus (nearly)
pure sentence complement verbs. Comparison of human participant results (a) and simulation
results (b) for Experiment 3.
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14The �rst three components account for 96% of the variance in the determiner subportion of
the visitation set and the �rst two account for 72 and 20% of the variance, respectively.

simulation results near the word the following SC-bias and NP-bias verbs
(Experiment 3). Again, the human and model results are consistent. This
time, both the model and the humans show increased processing time on the
�rst disambiguating word, although, as we noted earlier, in a replication of
Experiment 2, the anomaly did not show up until the next word after the
disambiguating word (the adjective). The better alignment between the
people and the model in these cases may be due to the presence of a stronger
signal in the language in each case: the word that is very likely to be a
complementiser; several of the SC-bias verbs of the experiment cannot
occur with direct objects.

The dynamical system for these simulations also has three main attractive
regions corresponding to the three major lexical categories: verb,
determiner and noun. Again, each region contains several distinct attractors
corresponding to the different syntactic uses of words in these classes. Here,
the effect of interest shows up on the determiners so we concentrate on the
determiner (+ complementiser that) subregion to interpret the results.

Figure 10 shows (black dots) the �xed bodies in the determiner (+ that)
subregion in two dimensions, the �rst and second principal components of
the determiner (+ that) sample.14 In this region, there are three attractors,
indicated by the three circles. The attractors correspond to the three
grammatically distinct behaviours associated with determiners (and the
word that) in the training grammar: in the middle right region of the �gure,
there is an attractor corresponding to subject determiners; in the lower right,
one corresponding to object determiners; in the upper left, one
corresponding to the complementiser use of that. Two distinct clusters lie in
the basin of the object determiner attractor: there is a very dense cluster
corresponding to unambiguous determiners like the, a, one, etc. (“V[NP]-
Det”); there is a more sparsely populated cluster corresponding to the word
that when it is used as an object determiner (“V[NP]-that”). There are also
several clusters which lie in the basin of the subject determiner attractor:
there is a dense cluster corresponding to unambiguous subject determiners
that occur at the beginning of a sentence (“p-Det”); there are a couple of
separate litte clusters corresponding to the word that when it is used at the
beginning of a sentence (“p-that”)—in this grammar, it can only be a subject
determiner in this position. There are also two other small clusters in the
subject determiner basin, corresponding to determiners following the word
that and the word that following the word that—to keep the diagram
uncluttered, these are not labelled in Fig. 10. The complementiser basin has
only one distinctive cluster in it.
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FIG. 10. A portion of the visitation set for simulations 2 and 3 with labelled clusters
representing determiners following NP complement and sentential complement verbs.

In all cases, the peripheral clusters in each basin are displaced away from
the attractors in a direction that re�ects their formal ambiguity: the uses of
that as a determiner are in the determiner basins, but are displaced in the
direction of the complementiser attractor; the uses of unambiguous
determiners immediately following SC-bias verbs are (mostly) in the subject
determiner basin, but they are displaced simultaneously in the direction of
the complementiser attractor and the object determiner attractor, re�ecting,
respectively, the facts that SC-bias verbs usually take complementisers in
this grammar and determiners following verbs usually introduce direct
objects.

Note that the clusters “V[Sbar]-Det” and “V[NP]-that” are not very
separate from each other in the �gure. This is partly a result of the fact that
we are only displaying two principal components—these two clusters
achieve much better separation on the third component. However, some of
the instances of “V[Sbar]-Det” actually lie in the basin of attraction of the
object determiner attractor. It took careful tuning of the parameter p to
make the basin boundary between subject determiner and object determiner
land roughly between these two clusters. Note that “misclassi�cation” of
some of the “V[Sbar]-Det” instances is not unreasonable—people may
sometimes try to parse “the raccoon” in a sentence like “She insists the
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raccoon . . .” as a direct object. However, this situation may also re�ect a
technical weakness of the current implementation. It is likely that a revision
of the neural network model can make the attractor basins line up perfectly
with the grammatically distinct classes (we return to this point in the General
Discussion). More generally, however, this result demonstrates that a mix of
two behaviours (correct and incorrect “initial” syntactic categorisation) that
are distinctly different according to traditional parsers naturally arises out of
our system.

Figure 10 makes it apparent how the model makes appropriate reading
time predictions in Experiments 2 and 3. An unambiguous determiner like
those following a transitive verb is processed relatively quickly because the
processor starts in the dense cluster near the object determiner attractor and
thus has only a small distance to travel to reach the attractor. A trajectory
labelled “1 2 3” in the lower right of the �gure provides an example of this
case. By contrast, the ambiguous word that following a transitive verb takes
quite a while to process because the processor starts in the “V[NP]-that”
cluster, far from the attractor locus (trajectory “1 2 . . . 1 3”). The processing
of such a phrase is slowed down both by the in�uence of the complementiser
attractor and by the in�uence of the subject determiner attractor. This is how
the model predicts the major contrast observed in Experiment 2. Likewise,
the ambiguous determiner the following a transitive verb is processed
quickly, just as those is (again the trajectory “1 2 3” in the lower right is
illustrative). The determiner the following an SC-bias verb takes longer to
process because it starts far from the subject determiner attractor and is
in�uenced signi�cantly by both the complementiser attractor and the object
determiner attractor (trajectory “1 2 . . . 1 0”). In this way, the model
predicts the contrast we focused on in Experiment 3. Figure 10 also shows
illustrative trajectories for sentence-initial unambiguous determiners
(“1 2 3” in the upper right) and for the word that following an SC-bias verb
(“1 2 3 4 5” in the upper left). These two cases are about equally easy to
process, but the “V[Sbar]-that” case has slower trajectories because it is a
lower-frequency type but it is isolated enough that it forms its own attractor
locus.

Thus these simulations illustrate how competition among attractors
provides a natural way of modelling the processing dif�culty associated with
ambiguous elements. Also, the expected effects of category frequency are
observed. Moreover, these simulations make it especially clear how formal
similarities can give rise to increased processing time even in circumstances
where the system is not making mistakes. We have, in the notion of an
attractor basin properly containing an attractor, the tools to encode both
major categorical distinctions (by distinguishing basins) and minor,
similarity-based in�uences (by distinguishing elements within a basin in
terms of their travel-time to the local attractor).
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USING CORPORA TO TRAIN A RECURRENT
NETWORK

The models presented in the section headed “Contingent frequencies and
that”, simulated processing of an entire language, using samples generated
by a �nite-state grammar in accordance with frequency patterns modelled
on a natural language corpus. These simple global models have advantages
over larger-scale models that incorporate a larger number of items. One
advantage is that their representations can be analysed more easily. A
second advantage is that global models can shed light on how experimental
results based on different parts of a language are related to one another.
However, there is no guarantee that the properties of these models will
generalise to a larger-scale model trained from a real language corpus.
Moreover, as we saw in the small-scale model of Experiment 1, there is an
important question about which features of natural language to encode in a
simulation grammar. Thus using a “toy” grammar to generate a corpus
always raises questions about whether the behaviour of the system that
depends upon the corpus input is actually due to distortions in the sample
corpus. It was therefore important to see whether a model trained from a
more realistic subset of a natural language corpus would exhibit the same
properties as the models trained from small grammars. This modelling study
also provided us with an opportunity to see whether a network trained from
a natural corpus could simulate item-speci�c differences in reading times.
This is an important test of the claim that the system is simultaneously
sensitive to category-leve l and to item-speci�c generalisations.

Following Juliano and Tanenhaus (1994), we trained a recurrent network
to predict the complement types that followed past-tense verbs, focusing on
those verbs that permit sentence complements to varying degrees. The
general architecture of the model is the same as the one used in the previous
section (see Fig. 11). However, the simulation presented here differed from
that in the previous section along three dimensions: the training set, the
input representation and the predictive task the model was given.

The input layer contained 122 units, 72 of which represented verbs; the
remaining 50 represented words, word categories and punctuation  that
could immediately follow the verb. Of the 72 units devoted to each of the
verbs, the �rst 5 units were similarity units. Similarity units were assigned
values determined from a principal components analysis performed on
semantic similarity judgements. The similarity units let the model take
advantage of the fact that verbs with similar complement structures typically
have related semantics (Fisher, Gleitman, & Gleitman, 1991). While, in
principle, a model might learn these similarities from co-occurrence
information in a large training corpus, we chose to incorporate similarity
into the representation because our training set was sparse and limited in
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FIG. 11. (Simple) recurrent network from simulation 4. The activation pattern on hidden
layer t  1 is set to the activation pattern of hidden layer t from the previous time step (as in
Elman, 1990, 1991), indicated by the curved arrow from hidden layer t to hidden layer t  1.

syntactic variability. Models in which we eliminated similarity units showed
the same pattern as the model presented here; however, they did not learn as
well, and they accounted for less of the variance in human reading times.

The similarity data were generated in a study conducted in collaboration
with Joshua Richardson. Three student participants were instructed to judge
a set of 70 verbs on how similar in meaning they were to each other on a
9-point scale. Each verb in the set was paired with all of the other verbs,
creating 4900 verb comparisons. These were randomly presented to the
participants. We averaged the judgements of all three participants and
performed a principal components analysis on the 70 × 70 matrix that
resulted. The principal components analysis was used to reduce the 70
dimensions to the �rst �ve principal components, which together accounted
for 60% of the variance. These �ve components were normalised to create a
5-unit vector for each verb.

The 67 units directly following the similarity units each identi�ed a
particular verb. Thus presenting a verb entailed setting the appropriate
input values for the �ve similarity units for that verb and setting its identity
unit to 1. The remaining 50 units at the input provided a localist
representation for an item that could follow the verb in the corpus. These
items could be one of 33 words (frequent articles, pronouns and
prepositions), 6 types of punctuation, 10 category types, or “other”, a
general category that included the 6% of the items that did not fall into any
of the other categories. The full set of verbs and “next” items is presented in
Table 6.

The hidden layer and output layer each contained eight units. Each
hidden unit was connected to itself and to all of the other hidden units. These
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TABLE 6
Verbs and the Words that Followed Them (“Next” Items) from Simulation 4

Verbs

accepted advised asserted remembered
attempted bought bribed shifted
claimed conceded conspired speculated
crept crouched declared stayed
disputed drifted estimated visited
faded fared feared wrote
felt �opped followed reported
gave glared glowed snarled
grabbed grew guessed sprang
helped hinted hoped tasted
implied indicated insisted vowed
intended invited knew revealed
left looked maintained sounded
mentioned needed peered staggered
pleaded pledged predicted tended
pretended proposed protested wept
realised recalled refused

Words that followed verbs

! for me RB those
, he my she to
. her NN T up
: him NNP that us
; his NNS the VBG
? in no their VBN
a it of them we
an its on these with
at JJ other they WRB
CD JJR our this your

recurrent connections among the hidden units are represented in Fig. 11 as
Hidden(t 1). In the output layer, each unit represented one of the following
complement types: adjectival (ADJ), adverbial (ADV), noun (NP),
prepositional (PP), in�nitival (INF), sentential (SC), verb (VP) and no
complement (NC). The NC category signi�ed end of clause or end of
sentence punctuation.

Both the output and hidden units in this model had �xed sigmoid
activation functions of the form shown in equation (3):

f (neti) = 1
1 + e net

i
(3)

where neti = bi + S wijaij, bi is the bias on unit i, ai is the activation of unit i, and
wij is the weight from unit j to unit i. The cost function was taken to be the
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TABLE 7
Comparison of the Percentage of Major Complement Types Following Past-tense Verbs
in the Treebank Corpora (Brown and Wall Street Journal) and Experiment 4 Training Set

Complement Type

Source ADJ ADV NP PP INF SC VP NC

Treebank 5.5 5.8 38.7 11.4 5.1 3.4 15.8 7.6
Training set 4.8 4.9 43.1 12.1 6.6 6.3 2.4 6.7

sum of the squared errors at each output unit over all patterns and is shown
in equation (4):

C = S S (ai   ti)
2 (4)

p i

where i indexes the output units, p indexes the training patterns and ti is the
target value. The error signal was backpropagated through the layers and
through one time step to adjust the weights on connections involving hidden
units (e.g. Pearlmutter, 1995; Rumelhart et al., 1986).

The training set was taken from the combined Brown corpus and the Wall
Street Journal corpus, both tagged and parsed by the Treebank Project
(Marcus, Santorini, & Marcinkiewicz, 1993). The training set consisted of all
the sentences in the corpus that contained any of our set of 67 past-tense
verbs. Thirty of these verbs were targets for our modelling efforts; the other
37 verbs were chosen to create a sample preserving the relative frequency
with which different complement types followed past-tense verbs in the full
corpus. Table 7 compares the percentage of each of the eight major phrase
types found in the Treebank corpus and in the training set. In general, the
match is quite good, though sentence complements are somewhat over-
represented because all the target verbs permitted sentence complements.
Also, verb phrase complements were somewhat under-represented because,
in the vast majority of these complements, the past-tense verb was followed
by an auxiliary verb. Since individual auxiliary verbs have such high
frequencies, the inclusion of even a single auxiliary in the training set would
have badly over-represented the frequency of the VP complement category.
We decided to overlook this discrepancy between the sample and the corpus
because the auxiliary + past-participle pattern did not play a foreseeable role
in the phenomena we were studying.

A training instance consisted of a past-tense verb, the word that followed
the verb and a complement type. The word pairs and complement types
were automatically extracted from the sentences in which they occurred in
the corpus. An example is presented in (12).
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12a. (S (NP (DT The) (NN lawyer)) (VP (VBD insisted) (SBAR (IN
that) (S (NP (PRP$ his) (NN client)) (VP (VBD was) (NP (NN
innocent)))))

12b. insisted that SBAR

A sentence from the corpus such as the sentence in (12a) would be
transformed into (12b). Training the model with an instance from the corpus
was carried out in two steps. First, for a verb like insisted in (12b), its
semantic representation units and its identi�cation unit were activated, then
the model was trained to produce the complement type that followed the
verb (SBAR in 12b) using backpropagation. Next, the verb input was set to
zero and the unit corresponding to the item that followed the verb (the in
12b) was activated. The model was again trained to produce the
complement. If the speci�c item that succeeded the verb was not one
recognised by the model, then the category of the word was activated. Note
also that the interconnections among the hidden units give a sequential
component to the model’s behaviour. After the �rst item of a two-item
training pair was presented, the hidden unit activation from the current time
step was recirculated to the hidden layer in the subsequent time step. Thus in
the example above, insisted would in�uence the prediction the model makes
when the is presented.

The complete training set consisted of patterns from 4798 sentences. The
model was initialised with different starting weights for each of three
training sessions and trained until the model’s overall error (RMS) no longer
seemed to decrease. On average, the model made seven passes through the
training set.

To generate reading times from the hidden space of this large-scale model,
we focused on the behaviour of the model when the word following the verb
had been presented (hence including all the cases where a determiner
occurred). We used the 4798 sentences of the training set to create a
visitation set, which meant that n, the number of �xed bodies in the
gravitational model, was 4798. After a little bit of probing, we set p = 3.0,
rmin = 0.001 and m = 0.000005.

Analysis of the Model

We began with some preliminary analyses of the model to see how the RCN
was performing the prediction task. First, we determined that the RCN
developed argument structure preferences by examining its predictions for
the 10 verbs that most typically occurred with NP complements in the
training set, and the 10 verbs that most typically occurred with sentence
complements (we later used these same verbs in more detailed comparisons
of the model’s predictions and human reading time data). After presentation
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FIG. 12. Analysis (PCA) of predictions from simulation 4 when just the verbs are presented.
Each verb is presented by the complement type it predicts in the simulation.

of the verb alone, the RCN correctly assigned the highest likelihood to the
complement type that had the highest likelihood in the training set for each
of these 20 verbs.

To examine the representations constructed by the RCN, we presented
the trained RCN with just the verbs from the training set. We then collected
the network’s predictions for upcoming complements and performed a
principal components analysis on the resulting output activation. Figure 12
shows all the verb types in the space de�ned by the �rst two principal
components, the latter accounting for 66% of the variance. For purposes of
discussion, we will classify verbs according to which complement was
assigned the highest probability of the RCN. Different groups of verbs are
clearly mapped to speci�c regions in space, as in the models described
earlier. This re�ects the fact that items group according to the environment
they occur in and the phrase types that they predict. A second observation is
that the different groups of verbs vary in how tightly they cluster. In the
upper right, there is a tightly knit cluster consisting of verbs that are reliably
followed by in�nitive complements. Somewhat less tightly knit are verbs
that strongly prefer an NP complement. These verbs are for the most part
strung out in one dimension along the horizontal axis. Verbs that prefer a
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FIG. 13. Attractor effects on items mediated by frequency. N = NP-bias verbs, S = sentential
complement verbs.

sentence complement form a somewhat loose association, spread along both
dimensions. This results from the fact that SC-bias verbs take a variety of
complement types. Also note that verbs are not assigned to discrete classes.
Rather, they are located on a continuum. Verbs that regularly take both
noun phrase complements and sentential complements (as determined by
corpus analyses of the Treebank corpus) �ll the space between NP-bias and
SC-bias verbs, appearing closest to the class that they are most similar to in
behaviour.

We also explored whether verb frequency itself had effects above and
beyond argument structure preferences. Speci�cally, to determine whether
effects of verb frequency were represented in the model’s representational
space, we compared the predictions that the model made when presented
with each of our experimental verbs with the corpus probabilities  of each
verb. A plot of both predictions and probabilities  in principal components
space is shown in Fig. 13. Each arrow represents a verb: the butt of the arrow
is its location in corpus probability space, and the head of the arrow
represents its position in the model’s prediction space. The arrows are longer
for lower-frequency verbs compared to higher-frequency verbs
[t(18) = 3.11, P , 0.006], indicating that lower-frequency items are pulled
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further from their locations in probability space towards locations associated
with other classes.

In the previous section, we presented evidence that dynamical models
based on simple grammars with a small number of prototypical lexical items
in each class can predict a range of signi�cant qualitative distinctions
observable in human reading time data. It is also important to evaluate
whether a model based on a more accurate corpus can predict item-speci�c
variation in reading times. To this end, we conducted an experiment using
many of the that and that-less complements that were presented to the large
RCN trained on the Wall Street Journal data. We then correlated reading
time predictions generated by the gravitational model based on the RCN
with the human reading time data.

Experiment 4: Reading Times to NPs in Sentence
Complements

Experiment 4 compared reading times to that and that-less sentential
complements when they followed three broad classes of verbs: verbs that are
typically followed by a sentential complement (SC-bias verbs); verbs that
are typically followed by a noun phrase complement (NP-bias); and verbs
that occurred approximately equally with both sentential and noun phrase
complements (EQUI-bias). We tried to select verbs in which there was at
least an approximate match between the corpus statistics and sentence
completion data collected in our lab. It was important to take into account
the completion data for two reasons. First, the sample in the Treebank
corpus is relatively small and thus subject to errors, especially for lower-
frequency verbs. Second, the verbs in the corpus appeared in a variety of
syntactic constructions, many of which were quite different from the types of
sentences presented in the experiment. The completions provided data for
complement preferences in environments similar to those tested in the
experiment. We were able to �nd verbs where the corpus statistics and the
completions were in good agreement for the SC-bias and NP-bias verbs, but
not for the EQUI-bias verbs, a point we will return to later.

The task we used was the “stop making sense” variant of self-paced
reading introduced by Boland, Tanenhaus and Garnsey (1990). We chose
this task because it is extremely sensitive to local syntactic and semantic
anomalies and the results are more closely time-locked to the input than
normal self-paced reading.

Method

Participants. Forty undergraduates from the University of Rochester
participated in the experiment for course credit. All were native speakers of
English.
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Materials. We selected 48 verbs that permitted sentence complements:
16 strongly S-complement biased verbs, 16 strongly NP-complement biased
verbs and 16 EQUI-biased verbs. While these classes are useful for grouping
the data, the verbs were actually on a continuum with verbs within a class
varying in the degree to which they occurred with S-complements. For
instance, some of the SC-bias verbs are followed by sentence complements
virtually all the time (e.g. implied), whereas some are not (e.g. claimed). This
variability made it especially dif�cult to select EQUI-bias verbs. Some of the
EQUI-bias verbs were closer to verbs in the SC-bias class with regard to the
complement types they predicted, while others were more similar to verbs in
the NP-bias class. Overall, selection of items for the EQUI-bias class was a
compromise—the corpus and sentence completion data were in agreement
for only about �ve of these verbs.

The base frequencies of the verbs were matched within verb class, with
each class having similar frequency ranges and distributions. The verbs were
embedded in 48 target sentences, each beginning with a determiner-noun
NP followed by the main verb, which in turn was followed by either a that or
a that-less sentence complement. The experimental items were combined
with 144 �ller sentences for a total of 192 trials. The critical sentences were
counterbalanced across two lists, such that a verb that appeared with a
that-less sentence complement in one list appeared with a that complement
in the other list. Each critical sentence was followed by at least two �ller
sentences. Roughly 20% of the �ller sentences did not make sense at some
point for either syntactic or semantic reasons. None of the �llers contained
experimental verbs or sentence complement constructions. Overall, 25% of
the sentences in each list had a main verb followed by a sentence
complement. The target sentences in each list were then pseudo-randomised
to create four different orders. This ensured that each item would be rotated
through different sections of the list to avoid position effects.

Procedure. Stimuli were presented on a colour monitor attached to an
IBM PC with a Digitry CTS timing card. The monitor was set to display 80
characters per line, and all of the critical sentences �t on a single line, with
the last word in each sentence accompanied by punctuation. Participants
pressed a key on a response box to control the presentation of the sentences.
Words accumulated one by one with each key press. Participants were
instructed to press the same key as long as the sentence made sense. If the
sentence stopped making sense, they were to press a NO button, which
terminated the trial. Before the regular experiment began, participants were
shown samples of nonsense sentences and received an explanation for each.
They then completed 10 practice trials. The entire session lasted about
30 min.
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FIG. 14. Cumulative percentage of no responses following the different verb types in
Experiment 4.

Results

Responses were collected for eight word positions in each sentence
beginning with the second word, which was the head noun of the subject. We
collected both “stop making sense” judgements (no-judgements) and the
time between button presses. We will brie�y discuss the judgement data
followed by the reading time data.

Judgement data. The sum of all the no-judgements at each word in the
sentence was calculated and then averaged across three regions of the
sentence: the verb, the noun phrase that follows the verb, and the succeeding
auxiliary phrase. These averages were then converted into percentages.
Figure 14 summarises the cumulative percentages of no responses for each
region. Note that participants rarely judged a sentence to stop making sense
until they reached the verb phrase in the complement clause.

The percentage of no responses was greater at the disambiguating
auxiliary phrase in the complement for that-less complements compared to
complements with a that. However, the degree to which participants rejected
the sentences varied markedly with verb class. Participants responded no to
approximately 20% of the trials in the NP-bias condition, 10% of the
EQUI-bias trials and only 5% of the SC-bias trials. At the auxiliary phrase,
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FIG. 15. Reading time differences between the that absent and that present conditions
following different verb types in Experiment 4.

there was a main effect of complementiser on the percentage of no-
judgements [F1(1,38) = 23.66, P , 0.001; F2(1,6) = 13.16, P , 0.02] and
an interaction between complementiser presence and verb-bias
[F1(1,72) = 3.70, P , 0.05; F2(1,6) = 8.99, P , 0.03]. Simple effects tests
showed that the difference between the complementiser present and absent
conditions was reliable for the NP-bias verbs [F1(1,38) = 39.62, P , 0.001;
F2(1,6) = 5.34, P = 0.06] and the EQUI-bias verbs [F1(1,38) = 6.61, P , 0.01;
F2(1,6) = 8.99, P , 0.03], but not for the SC-bias verbs.

Reading time data. Recall that reading times to the NP after a that-less
SC-bias verb should be affected by the strong NP-as-object attractor. Figure
15 presents the difference in reading times at the NP in the that and that-less
conditions. A positive difference re�ects longer reading time in the that-less
condition. The graph shows a large reading time difference for SC-bias
verbs, a small difference for the EQUI-bias verbs and no difference for the
NP-bias verbs. This was re�ected in a verb-type × complementiser
interaction [F1(2,76) = 4.94, P , 0.01; F2(2,12) = 4.56, P , 0.05]. Simple
effects showed that the complementiser effect was signi�cant only for the
SC-bias verbs [F1(1,38) = 35.19, P , 0.001; F2(1,6) = 10.05, P , 0.02].
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15We selected one of the three simulations at random for this analysis because it is
meaningless to average over the hidden unit values of different simulations.

16In the model, spillover effects seem to be weaker, so we were able to get away without
baselining. Since we did not train the model on sequences of the form “V that the”, we had no
way to baseline the model in the same way we did the humans.

FIG. 16. Regression showing the predicted reading time from simulation 4 as a predictor of
human reading dif�culty in Experiment 4. r2 = 0.45, P , 0.00005.

Comparison of the Model’s Predicted Reading
Times with the Human Data

We measured reading times as the number of time steps to reach an attractor
according to equation (2).15 We then computed a regression in which the
model’s gravitation time at the word the for each target verb was used to
predict the difference between human reading times at the following a verb
and human reading times at the following the complementiser that which
followed the verb. It was important to use the differences to factor out
spillover effects because of the frequency difference between “that” and the
preceding verb.16

The simple regression displayed in Fig. 16 reveals a good positive
correlation between the strength of the corpus model’s predictions and
human reading times at the region following the verb (r2 = 0.45,
P , 0.00005). It turns out that the is treated by the RCN of this simulation as
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17When the verb alone is presented, as we noted above, the model appropriately distinguishes
between complement types in most cases.

a very strong indicator of a following NP complement. When any one of
these 30 verbs is followed by the in the model, the model assigns the highest
probability to NP complement. This is, of course, a signi�cant error with
respect to the target probabilities for all the SC-bias verbs and about half of
the EQUI-bias verbs.17 Correspondingly, in the gravitational model, all 30 of
these cases of verb followed by the are in the same attractor basin. The
attractor that they are all drawn to corresponds to a prototypical NP-bias
verb. The verbs are arranged roughly on a cline according to how frequently
they take NP complements versus Sbar complements: NP-bias verbs are
closest to the attractor, EQUI-bias verbs are at an intermediate distance,
and SC-bias verbs are the farthest away. This cline is correlated with the
cline of reading times, so there is a good correlation between gravitation
times and reading times.

The Experiment 4 simulations thus provide some indication of the
potential of this framework to provide a close quantitative �t to reading time
data. Moreover, an interesting further prediction is suggested by the
framework. The bias towards predicting an NP complement when a verb is
followed by the may be too strong in this model. An RCN trained to �t the
corpus data more accurately (perhaps by training it longer) would probably
give rise to a gravitational model with separate attractors for the SC and NP
classes at the word the. Such a model would show a non-monotonic
relationship between gravitation time and the propensity of the verb to take
an NP (vs an Sbar) complement: strong NP-bias verbs would have low
gravitation times because they are near the NP-attractor; EQUI-bias verbs
would have fairly high gravitation times because they are in an intermediate
region; while certain very strong SC-bias verbs would have low gravitation
times because they would be near the Sbar complement attractor. Several
likely instances of very strong SC-bias verbs in this sense (e.g. said, thought)
were not included in the model because their high absolute frequencies
would skew the corpus statistics. Nevertheless, the gravitational model leads
us to expect that such high-frequency SC-bias verbs will show little reading
time dif�culty at the word the, so we leave this as a prediction to be tested in
future research.

GENERAL DISCUSSION

Summary

We proposed a dynamical systems approach to parsing in which syntactic
hypotheses are associated with attractors in a metric space and reading times
correspond to the time it takes the processing system to gravitate to an
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attractor from where it was initially placed in the space. This system predicts
increased reading times when a sequence of words shows mixed evidence as
to its proper classi�cation, because mixed evidence results in an
intermediate initial placement and hence a relatively long gravitation
trajectory. These effects occur even when the word sequence is parsed
correctly (i.e. when the processor is initially placed in the basin of attraction
corresponding to the correct parse). Thus although the current model treats
processing as a process of following a trajectory through a representation
space, it is not equivalent to serial garden-path models, which assume that
slowed reading times following an ambiguous region of a sentence typically
re�ect an incorrect �rst parse commitment followed by a time-consuming
revision. Rather long reading times often re�ect a competition process in the
spirit of most constraint-based models. In addition, reading time differences
can be associated with differences in the strength of attractors due to lexical
frequency effects and the frequency with which higher-order grammatical
categories occur in different environments.

Support for the approach came from a series of empirical effects which
were predicted by the attractor framework. Experiment 1 showed that
syntactic preferences across the same phrase types vary in ways that are
predictable based on corpus-derived likelihoods. However, Experiment 2
showed that syntactic preferences are not completely predictable from the
grammatical statistics of a corpus—sometimes even ungrammatical
possibilities appear to exert an in�uence (for example, the possibility of
treating that as a complementiser when it follows a verb that does not permit
a sentence complement). Experiments 3 and 4 provided a related example—
when reading an NP immediately following a sentence complement verb,
readers seemed to be in�uenced by the hypothesis that the NP was a direct
object.

Each of these effects was hypothesised to arise from either attractor
competition associated with intermediate representations, or differences in
the strengths of attractors associated with frequency differences, or a
combination of these. These hypotheses were tested in simulations of
Experiments 1–4. The simulations used a recurrent network trained on a
word prediction task to (a) construct a similarity-based metric space from a
training set generated by a corpus and (b) place the system at a point in that
representational space as successive words in an input sentence were
presented to the system. We then used an algorithm implementing a
gravitational dynamical system to model reading times. More precisely,
junctures between words in a corpus were assigned to locations in a
representation space according to the similarity of preceding and following
word sequences; a sample of such locations was interpreted as a set of point
masses; processing involved putting a test body in the space and letting it
gravitate towards the mass concentration that drew it most strongly. The
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18We have not focused on property (b) here, but it seems generally to be consistent with our
implementation, and it is consistent with a number of results relating absolute word frequencies
to reading time contrasts (Juliano & Tanenhaus, 1994; Trueswell et al., 1993).

model successfully categorised the linguistic input and simulated the reading
time effects observed in the experiments. An analysis of the trajectories
followed by the dynamical system showed how the reading time contrasts
stemmed from the speci�ed principles of dynamical processing.

The Role of the Dynamical Component

Given these initially promising results, it is important to evaluate both the
potential contributions of this work and its limitations. The �rst question
that arises is exactly what insights are being contributed by the dynamical
component of the model. This question is particularly important because our
implementation includes an RCN which performs the essential task of
organising instances in the metric space, and one might well wonder what
additional information the gravitational component is contributing.

In effect, the dynamical system provides a way of elucidating the
organisational system adopted by the RCN and showing how it might
plausibly be part of a processing system that generates observed reading
time contrasts. In particular, the dynamical system permits us to provide
explicit accounts of a number of well-known processing phenomena:

1. The time it takes the system to reach an attractor provides an explicit
analog of human reading time.

2. The strength of an attractor corresponds to the enhancing effect of the
frequency of a grammatical class on processing time.

3. The possibility of placing elements at contrasting distances from an
attractor allows us to conceptually unify two sources of reading time
contrasts:
(a) Word strings containing ambiguous signals are mapped to

intermediate clusters which do not form their own attractors and
hence take a relatively long time to process.

(b) Low-frequency elements within a grammatical class are mapped to a
large cloud of positions around an attractor and hence take longer to
process than the corresponding high-frequency elements, which are
mapped to a smaller cloud around the same attractor.18

Although we have not emphasised property (b) here, we think it is an
important advantage of the dynamical treatment that it allows us to unify
increased processing time due to category-based ambiguity and increased
processing time due to low frequency, by treating them both as stemming
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19For example, in the gravitational implementation, there are clusters which do not form their
own attractors.

from representational intermediacy. This is well-motivated on information-
theoretic grounds: the processor should hedge its bets on categorically
ambiguous items because they show a mixture of behaviours; it should also
hedge its bets on low-frequency items because it has less experience with
them and cannot be as sure of their behaviours.

4. The possibility of having aberrations  in the phase space which do not
correspond to differences in its topology19 provides an appealing new
approach (though not a full-�edged solution—see below) to the “grain
size problem”. In essence, it provides a way of thinking about “grain size”
in a neural-network compatible medium.

5. The attractors correspond to the behaviourally important syntactic
distinctions, and thus embody the “emergent properties” that have
sometimes been hypothesised to account for syntactic effects in
constraint-based models.

The role of the RCN in the model is to assign the instances of between-
word junctures in the test corpus to positions in the representation space
according to the statistical similarities among the surrounding-word
contexts. In fact, it is fairly apparent in the cases of the simple grammars
examined here why the RCN places each element where it does: there are
clusters corresponding to junctures between words that are statistically
distinct under the training grammar and these are spatially organised
according to similarity; the density of elements within a cluster is roughly
inversely related to distance from the cluster’s centre of mass; junctures that
contain locally ambiguous cues show residual effects of the stage when the
network was primarily sensitive to immediate context effects—they are on
the peripheries of the dense clusters for this reason. These principles are
consequences of the well-known sensitivity of neural networks to frequency
contrasts and the well-known diffusion of the error signal across layers in
backpropagation. With an understanding of these principles, one can, in the
case of the simple grammars of Experiments 1, 2 and 3, design a phase space
by hand which looks very much like the neural network solutions (which
reliably emerge over and over again on repeated training trials with different
starting weights) and makes all the desired reading time predictions when
the dynamics are applied. Certainly, in more complex grammars, the
representational system adopted by an RCN may be harder to intuitively
predict. We believe that the type of dynamical analysis proposed here may
help identify the important features of the representation in such complex
cases.
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Potential Alternative Approaches

One natural alternative approach to the data we examine here would be to
directly associate reading times with some property of the RCN. For
example, one might try to use output error itself to predict reading times.
While this approach is appealing in some respects, it also has some
shortcomings. A model which predicted reading times from output error
values would not be explicit about what computation was taking more time
in some cases, less time in others. In other words, it would be a merely
correlative model. Moreover, such an account would not be very revealing of
the representational principles underlying its success: there would be
nothing corresponding to a parse hypothesis in the model; there would be
nothing revealed about the distinctions between different sources of reading
time contrast (e.g. frequency of a class vs frequency of an element within a
class vs multiple class membership of a word). Finally, in several of our
models, the network learns “too well” for this approach to work well: certain
hidden-layer distinctions which give rise to the appropriate reading time
predictions are made very minimal on the output layer because they do not
correspond to important behavioural differences in the training
environment (e.g. the contrast in reading times between “that” and “those”
in “The woman visited that hotel” vs “The woman visited those hotels”).
Thus it would probably be hard to predict the important contrasts by
examining output error alone.

Alternatively , one could model grammatically distinct processing states
using a recurrent network by associating them with different points along
transient trajectories (as in Rodriguez, 1995; Wiles & Elman, 1995), rather
than with �xed points (e.g. attractors). This approach would make direct use
of the attractor dynamics of RCNs themselves, rather than creating an
additional dynamical overlay as we have done, and such simplicity is
certainly desirable. However, it is not obvious to us what features of such
models might be likely to correspond to reading times. Nor is it clear to us
how to implement even �nite-state grammars of any complexity using the
transient-based computation principles, which seem to require perceiving
certain special kinds of symmetry in the data. Thus while we believe that this
approach represents a very interesting direction which may eventually help
solve some of the most important problems in dynamical grammar
representation, it does not seem useful at the present time for handling the
processing data we observe.

Limitations of the Current Account

The current dynamical model, of course, has some serious limitations.
Newtonian gravitation is not particularly realistic as a model of neural
encoding. Nor is the mixture of RCN mechanisms and gravitational
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mechanisms particularly elegant. But there are at least two reasons to be
interested in such a model anyway: (1) it predicts a range of data in a domain
where very few implemented models have been put forth, and (2)
Newtonian gravitation of the sort we describe is similar to the settling
processes in a variety of neural networks which are somewhat better
approximations of brain processing. We see it as an important challenge for
future research to develop a neural network implementation that handles a
similar range of phenomena. Meanwhile, our account provides a nice
stepping stone in this direction because we show not only that a range of data
can be implemented in a dynamical model with these kinds of properties, but
also why the dynamical model makes the right predictions, and why other
models fall short. In this way, we articulate a framework in which to develop
a more neurally plausible dynamical model.

One possible implementation, closely related to our current proposal, is to
combine a standard RCN hidden layer with a clean-up cycle (e.g. Hinton &
Shallice, 1991; Hinton, Plaut, & Shallice, 1993) on the output layer. Such a
model would be very similar to the gravitational model we discuss here, with
the clean-up cycle doing the work of the gravitation mechanism. A potential
technical challenge for this approach stems from the fact that clean-up unit
layers tend to form attractors at the corners of the unit hypercube, but in the
word prediction task, which we have chosen for its usefulness in studying
phrase structure in a statistical setting, the output units need to converge on
probability distributions, which are generally far from those corners.

Another possibility is to implement continuous activation settling in the
recurrent hidden unit layer, for example by using Pineda’s (1995) recurrent
backpropagation (RBP) algorithm. RBP forms attractors corresponding to
distinct classes de�ned by the training task, and locates them relative to one
another according to principles of formal similarity. One might hope that
competition between nearby attractors in this framework would lead to
similar results to the ones we have observed here. A challenge for this
approach is to handle the long-distance dependencies which are typical in
natural language.

The current project is also limited in the range of processing phenomena it
addresses. We have focused on reading time contrasts that are speci�cally
related to syntactic class ambiguities. One may wonder if the framework is
general enough to handle purely structural ambiguities, for example
attachment ambiguities.  In fact, structural ambiguities, including
attachment ambiguities, are quite generally tied to differences in lexical
felicity [e.g. “She watched the policeman with the binoculars” (ambiguous)
vs “She watched the policeman with the moustache” (unambiguous)]. These
differences are associated with different classes of words and thus give rise,
in our model, to distinct attractors associated with distinct structural parses.
Thus we expect the model to be able to make appropriate predictions about
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20Nor would it help to adopt a different principle from minimal attachment, which causes the
model to parse the “that N” after a transitive verb as the subject of an embedded sentence. Such
a model would incorrectly fail to predict reading time dif�culty at the embedded subject noun
phrase in sentences of the form “NP V[Sbar] [NP VPSbar]”.

these kinds of cases as well, and are pursuing this hypothesis in ongoing
research.

A Useful Reformulation

Finally, we mentioned above that the current model suggests a new
approach to the “grain size” problem. In essence, the introduction of
attractors and attractor basins into the metric space representational
framework of statistical and neural network language research allows us to
specify a “grain” above which behavioural distinctions are grammatically
signi�cant and below which they are not. This “grain” is indexed by the
parameter p in the gravitational  model, which determines which clusters of
points will form their own basins of attraction and which will be grouped
with other clusters. Thus p is a free parameter.

Nonetheless, the current proposal is an improvement over the processing
models based on standard, discrete category grammars discussed by
Mitchell et al. (1995), for those models appear to face a “grain paradox” in
attempting to model the current data. For example, to treat the reading time
slow-down at the word that after a transitive verb (Experiment 2) as
stemming from a con�ation of transitive and SC-bias verbs, such models
presumably need to claim that on its �rst pass, the processor just looks at
very broad lexical categories of words, treating all verbs as one type. At the
word that itself, the principle of minimal attachment chooses the determiner
option, since it is compatible with the minimal transitive structure and
receives no negative signal, even when lexical details are taken into account,
for the verb is transitive and that is a legitimate determiner. Choosing a
smaller initial grain size that, say, distinguishes transitive from SC-bias
verbs, will not help because the verb will select the appropriate structure
immediately in this case.20 In other words, no grain size choice is effective
under standard representational assumptions. As researchers begin to
document a wider range of statistical effects on parsing, we expect that
numerous grain size paradoxes like these will emerge.

In the dynamical model, by contrast, we are able to choose a “grain size”
independentl y of reading time considerations, thus allowing us to make the
attractors line up almost perfectly with the behavioural distinctions. With
attractors of this grain size, we get the appropriate signal-competition effects
in reading times. It cannot be said that the current dynamical treatment
solves the grain size problem because we have not explained how the right
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grain size can be selected on the basis of behavioural considerations alone
(i.e. independently of the training grammar which language learners clearly
have no direct information about). Perhaps it can be said, though, that it
transforms what was a grain size paradox into a theoretical question about
why a certain grain size might emerge as optimal for learning,
representational and processing considerations.
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