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ABSTRACT
This paper analyses a three-layer connectionist network that solves
a translation-invariance problem, offering a novel explanation for
transposed letter effects in word reading. Analysis of the hidden
unit encodings provides insight into two central issues in cognitive
science: (1)What is thenovelty of claimsof “modality-specific” encod-
ings? and (2) How can a learning system establish a complex internal
structure needed to solve aproblem?Although these topics (embod-
ied cognition and learnability) are often treated separately, we find
a close relationship between them: modality-specific features help
the network discover an abstract encoding by causing it to break the
initial symmetries of the hidden units in an effective way. While this
neural model is extremely simple compared to the human brain, our
results suggest that neural networks need not be black boxes and
that carefully examining their encoding behaviours may reveal how
they differ from classical ideas about the mind-world relationship.
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1. Introduction

Over the past several decades, various theoretical perspectives in cognitive science have
urged the field to move away from the symbolic computational approach which first gal-
vanised it in the mid-twentieth century: connectionism (Churchland & Sejnowski, 1992;
McClelland, Rumelhart, & the PDP research group, 1986; Rumelhart, McClelland, & the
PDP research group, 1986) rejects localist and discrete representations and emphasises an
important role for feedback effects; dynamical field theory (Johnson, Spencer, & Schöner,
2008; Thelen & Smith, 1994) argues for the relevance of dynamical systems phenom-
ena like attractors and self-organisation; ecological psychology (Michaels & Carello, 1981;
Prindle, Carello, & Turvey, 1980) advocates “direct” (unmediated by inferential processes)
perception and also promotes dynamical systems theory (Kelso, 1995); embodied cog-
nition (Barsalou, 2003; Barsalou, Simmons, Barbey, & Wilson, 2003; Glenberg & Kaschak,
2002) argues for perceptual simulation in place of symbolic abstraction. These perspectives
have a number of commonalities. They tend to emphasise interactive, feedback models,
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often related to neural structure. They emphasise the groundedness of abstract mental
concepts in concrete physical properties of the world. All four approaches place particular
importance on the context-sensitivity of an organism’s behaviour.

However, it is not yet clear if thenewapproaches constitute a significantdivergence from
traditional assumptions. For example, work in embodied cognition finds that when people
think of concepts like “lawn”, “cranberry”, “wrench”, etc., they simulate specific instantia-
tions of these entities, influenced by their context of occurrence (e.g. “lawn” evokes roots
in the context “rolled-up lawn” but it evokes blades of grass in the context “front lawn”, Wu
& Barsalou, 2009). Relatedly, other studies find that sensory (Martin, 2007; Martin & Chao,
2001; Simmons, Hamann, Harenski, Hu, & Barsalou, 2008) and motor-related (Beauchamp,
2005; Beauchamp, Lee, Haxby, & Martin, 2002) areas of the cerebral cortex are involved
in the neural response to concepts even when perception and action are not obviously
involved. But even though behavioural and neural studies show that people are activating
specific properties when they process words or images with abstract import, it is possible
that these context-sensitive activations do not add anything particularly important to the
claims of the classical view. Perhaps abstract symbolic representations are doing the main
work of organising our thought and allowing us to make useful inferences; for example,
the situation-specific encoding may be a kind of peripheral resonance stemming from bi-
directional connections between the seat of abstraction in the neural core and the sensory
layers closer to the periphery (the bidirectional connections being needed, in any case, to
permit both bottom-up and top-down information flow, for example, for detection and
prediction) (Mahon & Caramazza, 2008). It might be that the system would exhibit the
same abilities, make the same decisions, and occupy the same ecological niche even if this
peripheral resonance were not present.

Another argument against the importance of situation-specific encodings is that veridi-
cal simulation of the world is of little relevance to perceptual theory. Positing simulation
of the world1 simply transfers the problem of understanding how the brain interprets
the world around it to the problem of understanding how the brain interprets its men-
tal simulation of the world around it. Therefore, according to this argument, while these
approaches may have demonstrated the existence of context-sensitivity as a low-level
neural and behavioural phenomenon, this finding has little relevance to perceptual theory.

Here, we take a close look at a connectionist model which develops (via a learning
process) context-sensitive encodings of orthographic words. We created a model that is
sufficiently complex to handle a theoretically interesting case but also sufficiently simple
that we can analyse it carefully. By showing how context-specific encodings can play a
central role in the functionality of an artificial neural model, our findings suggest, against
the arguments just enumerated, that context-specific encodings may be centrally rele-
vant to perception; they also suggest that a more precise understanding of the nature of
this context-sensitivity is needed. In particular, we find (1) that although the model forms
encodings that mirror seemingly irrelevant physical details, the mirroring is not veridical;
it is warped with respect to the properties of the world to which we standardly apply the
label “physical”. Thus it may not be appropriate to describe what it does as “simulation”
or “representation” of the world. We also find (2) that although we trained the model to
perform an abstraction (assigning constant phonology to written words when they appear
in different spatial positions), the model learned successfully only if there was a physical
asymmetry in the data set (some category members were more typical than others); this
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asymmetry was not important as far as the abstract behaviour was concerned (there was
no difference in behaviour required of the atypical category members), but the asymmetry
played a crucial role in allowing the learning to succeed. This finding suggests an interde-
pendence of symbolic and subsymbolic structure that argues against classical conceptions
of representational abstraction (see Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 1988; cf.
Smolensky, 1988, 1991). If the model resembles real people in relevant regards, then these
results suggest that the new approaches are onto something.

2. Case study: transposed letter effects

A case of particular interest in word recognition is transposed-letter (TL) effects. Chambers
(1979) found that in a lexical decision task, participants were slower to accept words like
SLAT that were related to other words by the transposition of two letters (here, SALT) than
they were to accept frequency-matched control words (e.g. HUMP). Chambers also found
that participants were slower to reject TL non-words (e.g. STROE from STORE) than they
were to reject controls derived from frequency-matched words (e.g. CHROB). In a priming
paradigm, Forster, Davis, Schoknecht, and Carter (1987) found that for the same target (e.g.
INVOLVED), TL non-words (e.g. INVOVLED) produced stronger priming effect than replaced
letter (RL) non-words (e.g. INVORVED; see also Schoonbaert & Grainger, 2004). Acha and
Perea (2008) found inhibitory effects for words with higher frequency TL neighbours com-
pared with words with no TL neighbours. A general interpretation consistent with these
findings is that the mental encodings of the TL stimuli are closer to the encodings of the
corresponding base words than are the encodings of the RL stimuli.

The existence of the TL/RL contrast is challenging for traditional slot-based coding
schemes (e.g. McClelland & Rumelhart, 1981). Because these schemes separately encode
the properties of each letter in each slot, a letter in position 1 is nomore similar to the same
letter in position 2 than to a different letter in position 1, so these models fail to predict
the observed TL/RL contrast. Therefore, a number of researchers (e.g. Davis & Bowers, 2004,
2006; Gomez, Ratcliff, & Perea, 2008; Grainger&VanHeuven, 2003;Whitney, 2001) havepro-
posed distributed coding schemes in which letters are not strictly associated with a single
slot, but have ties to nearby slots as well.

Instead of hand-wiring such a distributed code, Rueckl, Fang, Begosh, Rimzhim, and
Tobin (2008) created a learningmodel that was trained to recognise words in multiple hor-
izontally displaced positions. An advantage of considering a learning model rather than a
hand-wired model is that there may be subtle properties of the encoding system which
stem from the geometry of the task and which we are not likely to be able to formulate
intuitively. The learning model provides a quantitatively explicit hypothesis about how
the geometric relationships among members of the training set give rise to an encoding
geometry. The learning model of Rueckl et al. also ties these TL/RL results to a wide range
of other phenomena in word recognition that appear to stem from the interaction of the
learning mechanism with properties of the distribution of forms in the language (e.g. non-
word naming, frequency by regularity interaction; Davis & Bowers, 2004; Plaut, McClelland,
Seidenberg, & Patterson, 1996; varieties of dyslexia, Harm & Seidenberg, 2004).

Here, we review Rueckl et al.’s relatively large simulation of the processing of a sample of
Englishwords, noting that it predicts theobservedTL/RL contrast.We thendescribe ahighly
simplifiedmodel that predicts the TL/RL contrast in a similar way to the Rueckl et al. model.
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The advantage of studying the simplifiedmodel is that it is complex enough to reveal inter-
esting subtleties of the learning dynamics and encoding geometry but low-dimensional
enough that we can analyse it in some depth.

2.1. A “large” connectionist model of TL effects

Rueckl et al. (2008) trained a feedforward connectionist model to identify the phonology of
2998 monosyllabic English words, presenting the orthographic form of each word in ran-
domly varyingpositions. The output layer in theirmodel employed the encoding schemeof
Plaut et al. (1996): a Consonant–Vowel–Consonant template with a total 61 phoneme units
(23 for the first consonant; 14 for the vowel; 24 for the second consonant). The phoneme
units encoded phonemic features like /a/ in POT and /e/ in BED. The input layer used slots
for letter positions. Each slot wasmade up of 26 units corresponding to the 26 letters of the
English alphabet (a localist encoding at the letter level). Twelve slots were used to repre-
sent 12 horizontally-arrayed letter positions. The presence of a given letter was indicated
by setting the appropriate unit to the value of 1 and all others in the slot to 0.

The input layer was fully feedforward-connected to a hidden layer with 200 units, which,
in turn, was fully feedforward-connected to the output layer. A unit’s net input, netj , was
calculated by Equation (1), where ai represents the activation of unit i,wij is theweight from
unit j to unit i and bi is the bias of unit i. The activation (ai) of each unit i was the standard
logistic function of the unit’s net input neti as indicated by Equations (1) and (2).

neti =
∑
j

aiwj + bi, (1)

ai = 1
1 + exp(−neti)

. (2)

2.1.1. Training procedure
Rueckl et al. used the back-propagation algorithm (Bryson & Ho, 1975; Rumelhart, Hinton,
& Williams, 1986) with a cross-entropy cost function (Hinton, 1989) to train this network.
On each epoch, the entire training corpus was fed into the model. At the end of an epoch,
the weight changes were administered in proportion to a combination of the accumulated
error derivative and previousweight changes. Themomentumparameterwas set to 0.0 ini-
tially and then to 0.9 after the first 10 epochs of training (Jacobs, 1988). The weight change
was scaled by a global learning rate of 0.001. To discourage overtraining, the reachable tar-
gets of 0.1 and0.9were used insteadof 0 and1.Weight decaywas also added in the training
bymultiplying the sumof the squares of eachweight by a constant of 0.9999 (Hinton, 1989).
The small initial weights were assigned random values uniformly distributed between−0.1
and 0.1.

Rueckl et al. found that after training, the average hidden layer (Euclidean) distance
between base words and TL non-words was significantly shorter than between base words
and RL non-words. To make a more explicit model of the TL priming effect, simulated
reaction times were calculated by cascading output unit activations, a method of trans-
lating the hidden-output map of the fully trained network into a set of differential equa-
tions which exhibit different convergence times for different inputs (McClelland, 1979). TL
primes produced significantly shorter reaction times than RL primes. The coincidence of
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smaller distances between hidden representations and shorter reaction times in the prim-
ing paradigm suggests that the source of the reaction time difference is the deployment
of the hidden representations. In the following, we make the simplifying assumption that
there is a causal relationship between hidden unit geometry and reaction times in the prim-
ing paradigm.We therefore focus our effort on understanding the causes (in the interaction
of the training data with the learning process) of the hidden unit geometry.

Next, we describe a simple analogy of Rueckl et al.’s model.

2.2. The basic model

2.2.1. Encoding and architecture
We constructed a scaled-down version of Rueckl et al.’s model using an alphabet of only
two letters (here called “B” and “D”) and “words” only two-letters long. All 4 possible words
formed from the alphabet were presented to a scaled-down network (with one unit turned
on to uniquely encode each letter in a particular position). The words were presented in
each of 9 horizontal positions (Figure 1). In other words, the model had a slot-based “visual
field”with a diameter of 10 slots. Therewere two units in each slotmaking a total of 20 units
in the input layer. A given word, like BB could appear in any one of 9 positions across these
slots (e.g. BB-------- = Position 1, -BB------- = Position 2, . . . , --------BB = Position 9). The
output “phonological code” was identical to the input code except that there was no vari-
ation in spatial position. Thus there were just 4 output units: “B” in first position, “D” in first
position, “B” in secondposition, and “D” in secondposition. Note that neither the input cod-
ingnor the output codingprovided a simple cue towhatwe, as readers ofwritten language,
think of as physical position. For example, in the input space, the encodings of stimuli BB3
through BB9, which are arrayed at equal intervals along a horizontal line in physical space,
were all equally distant from BB1 because these words all had no common input features
with BB1. On the other hand, BB1 and BB2 share a feature. In this sense, information indicat-
ing the physical proximity of nearby words is present, but this information does not specify
the geometric relationships among words offset from one another by more than one slot.
The output encoding was position-invariant so it trivially provided no cue to position.

The network had 10 hidden units. Except for the small number of letters, the slightly
reduced number of slots (10 instead of 12), and the localist coding output phonemes, this
“Basic Model” had the same structure as the model of Rueckl et al.

Figure 1. Network architecture. The input layer (bottom) represents 10 input slots with letter B and D.
There are 10 hidden units in the middle. The output layer (top) represents “phonological code” with no
variation in spatial position.
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2.2.2. Training process
Like Rueckl et al. (2008) we employed the cross-entropy error function and trained the
model using backpropagation. During training, each of the 4 words was randomly pre-
sented in one of the 9 positions in each epoch. The model was trained in 10 separate runs,
each starting with different random initial weights.

2.2.3. Performance assessment
The model’s performance was first assessed via pronunciation accuracy. A response was
counted as accurate when the set of active output units (i.e. activation > 0.5) matched the
active target units. After 100,000 epochs of training, all 10 runs produced 100% correct pro-
nunciation for all 4words in all positions. The average training epoch atwhich 100% correct
behaviour was reached was 44880.

In the simple 4-word vocabulary (BB, BD, DB, DD) we took BD andDB as an analog of a TL
pair and BB andDD as an analog of a RL pair. Following Rueckl et al., we defined the similar-
ity of each pair as the average Euclidean distance between corresponding position specific
tokens of the pair in all positions (e.g. Similarity(BB, DD) = Meani∈Positions (Distance(BBi,
DDi))). For each run, we computed the similarity between TL and RL tokens. Across the runs,
the distances between TL pairs were significantly smaller than the distances between RL
pairs, t (9) = 431.18, p < .001). Thus, under the analogy specified, the Basic Model had a TL
effect geometry like the Rueckl et al. model.

3. Interpretation of basic model

3.1. Depiction of the hidden space geometry

Next, we sought a visualisation of the geometry of the Basic Model’s hidden unit represen-
tations. We used principal component analysis (PCA) to analyse the deployment of the 36
input patterns in the 10-dimensional hidden unit space. The first two principal components
accounted for more than 98% of the variance in each of the 10 runs. This indicates that
virtually all the important structure in the solution lay in the space defined by these two
components. Figure 2 shows the hidden positions of all words in this space for one of the

Figure 2. Hidden unit activations of the 36 input patterns projected onto their first two components.
Thenumber attachedon the right side of theword indicates its input position. For example, BB3 indicates
the word BB was presented on the third position which activates the input units, B3 and B4.
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runs. Every run showed the same pattern (allowing 180° rotation of the axes). In particular,
the following properties held in each of the 10 runs:

(1) Component 1 distinguishes the pure cases (BB vs. DD) and Component 2 distinguishes
the mixed cases (BD vs. DB). Each shaded area covers one of the four possible phono-
logical combinations. If we adopt a different basis within the space of Components 1
and 2, referring to the line through (−1,−1) and (1, 1) as the X′ axis and the line through
(−1, 1) and (1, −1) as the Y′ axis, then X′ codes B vs. D in the first output slot, while Y′
codes B vs. D in the second output slot. (Note that this encoding parallels the kind of
featural encoding that is often used in symbolic models.)

(2) Within each quadrant, the set of tokens shows high physical correspondence: that is,
the distances between tokens in hidden unit space are roughly proportional to their
distances in physical space.2 Note, for example, that even pairs like BB1 and BB3 that
share no input features but are physically nearby tend to be relatively near each other
in hidden space; on the other hand physical correspondence is not maximal in any
of the groups: the pure classes show modest curvature relative to physical space and
the mixed classes lie on ring-like structures. Below, we examine an explicit measure of
physical correspondence in order to assess the conditions under which encodings that
mirror the geometry of physical space, at least to some degree, arise.

(3) The deployment of tokens within the BB class is opposite the deployment within the
DD class (e.g. BB1 is kitty-corner to DD1). In all classes, the peripheral tokens in physical
space (e.g. BD1, BB9) are more peripheral in hidden space than the central tokens in
physical space (e.g. BD5, BB5). Moreover, the mixed classes are aligned with the pure
classes so that each pure class token (e.g. BB9) is closer to the mixed class token that
shares its more peripheral letter (DB9) than to themixed class token that shares its less
peripheral letter (BD9).

(4) The 36 patterns have rectangular symmetry (symmetry about a horizontal axis and
about a vertical axis). Component 1 (horizontal) is larger than Component 2 (vertical).
Moreover, along Component 2, the most peripheral pure cases are more peripheral
than the most peripheral mixed cases.

We now consider the reasons for these encoding properties, asking, first, why this geom-
etry exhibits the TL-RL asymmetry, and then why the geometry exhibits a high degree of
physical correspondence within classes.

3.2. Cause of the TL-RL asymmetry

One source of structure in the hidden unit representations of a feedforward network is the
similarity structure of the target patterns. When our network was initialised with small ran-
dom weights, the hidden unit encodings of all the inputs were distributed around a single
point in a normal distribution with small variance. Backpropagation encourages the hid-
den unit representation of each training exemplar to move toward a common location for
exemplars of its own class (i.e. with the same target) and to move apart from exemplars of
other classes. The velocities of these movements apart during the training process are par-
tially determined by the similarity structure of the target patterns. The four possible target
patterns, along with their inter-pattern distances are shown in Table 1.
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Table 1. The inter-target distances between patterns.

Target activations Pattern name BB BD DB DD

1 0 1 0 BB 0
√
2

√
2 2

1 0 0 1 BD
√
2 0 2

√
2

0 1 1 0 DB
√
2 2 0

√
2

0 1 0 1 DD 2
√
2

√
2 0

Table 2. The distances between the centres of masses
of the inputs of the four classes.

Pattern name BB BD DB DD

BB 0 0.4714 0.4714 0.9162
BD 0 0.2222 0.4714
DB 0 0.4714
DD 0

Since the tokens of BB, BD, DB, and DD, respectively, have identical targets, the hidden
unit encodings of the inputs in any one of these classes tend tomove in the same direction.
With respect to the separation of themembers of different classes, the greatest inter-target
distances are between BB and DD on the one hand, and BD and DB on the other, so these
groups tend to move farthest apart from one another.3 However, there is no asymmetry in
the output structure that could account for the mixed case (BD/DB) vs. pure case (BB/DD)
asymmetry that we are interpreting as analogous to TL/RL asymmetries. We turn, there-
fore, to the structure of the inputs, the only other systematic source of asymmetry in the
training set.

The structure of the input patterns also influences the deployment of hidden encod-
ings. When input patterns share features, they tend to produce similar outputs. Therefore,
overlapping input patterns which map to different outputs result in contradictory (oppo-
site sign) changes in the hidden locations. On average, then, distinct classes with more
shared input structure will separate more slowly than distinct classes with less shared
input structure. The amount of shared input structure can be inferred from the distances
between the average vectors of each class (closer average vectors implymore shared struc-
ture). Table 2 shows the distances in input space between the average vectors of the four
classes.

Table 2 makes one source of the TL/RL asymmetry clear: the distance between the aver-
agevectors of the twomixedclasses (0.22) is lower than thatbetween theaveragevectors of
the two pure classes (0.92). This difference arises because the common letters of themixed
classes coincide inwords that are displaced by one letter-position fromeach other (e.g. BD1
andDB2 share a “D” in slot 2); on the other hand, none of the instances of BB have any over-
lap with the instances of DD. On average, this makes the BD and DB classes separate more
slowly than the BB and DD classes.

In sum, the analysis based on average input vectors reveals a reason for the asymmetry
between the BB/DD separation on the one hand, and the BD/DB separation on the other,
which is at least partially responsible for the TL/RL asymmetry in the BasicModel. This analy-
sis does not, however, address the within-class physical correspondence that we remarked
on above.
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3.3. Cause of high physical correspondence within classes

As noted above, the Basic Model seems to exhibit high within-class physical correspon-
dence. This property is interesting because, as noted above, there is no simple indicator
of spatial position in the inputs or the outputs to the model. This section of the paper first
quantifies the notion of “physical correspondence” and then probes the reason for high
within-class physical correspondence. The section will show that the cause of the within-
class physical correspondence in the BasicModel is a kind of “domino-effect” in the learning
processwhich is triggered bywhat seems like a representationally unimportant asymmetry
in the structure of the input, allowing us to pinpoint the reason that the BasicModel encod-
ings both resemble physical spatial structure and diverge from it. In General Discussion, we
explain how this analysis allows us to conclude that the Basic Model is an example of a
perceptual system which is not decomposable into a symbolic level of description and an
implementational level of description (Fodor & Pylyshyn, 1988), hence providing an explicit
demonstration of a connectionist encoding that is non-classical. The section will also show
that the Rueckl et al. model shows relatively high within-class physical correspondence,
suggesting that the analysis of causes provided here may apply in a more realistic model
as well.

3.3.1. Quantification of “Physical correspondence”
The spatial structure “in the world” that interests us here is the physical deployment of
written words on a page. We are interested not in absolute spatial position but in position
relative to an observer’s point of focus. For simplicity, the currentmodel assumes that input
spatial positions differ only in one spatial coordinate, which is analogous to the “horizontal
coordinate” in normally oriented perception of written stimuli in a language like English,
which is written from left to right with spaces between the words.4 It is clear by inspection
that the model does not form a hidden code that is a linear scaling of the physical posi-
tions of tokens. But within classes of tokensmapping to the same output, physically nearby
tokens tend to lie approximately along straight lines in hidden unit space. We can esti-
mate the degree of this approximation by considering the average angle between the line
segments connecting the encodings of physically adjacent codings in hidden unit space:

PhysCorr = 1
(n − 2)

n−2∑
i=1

angle(tc,itc,i+1, tc,i+1tc,i+2), (3)

where tc,i is the hidden unit encoding of the i’th token of word c (e.g. tBB,1 is the hidden
unit position of BB1), xy is the line segment connecting points x and y, angle(xy,yz) is the
angle sweeping segment yz into segment xy, and n is the number of tokens in the class.
A set of hidden unit locations exhibiting maximal physical correspondence with the linear
sequence of input locations has PhysCorr = 180°. By Monte Carlo simulation, we discov-
ered that a collection of points distributed randomly (normally) in a space of any dimension
visited in random sequence has PhysCorr close to 60°. Thus, to assess degree of physical
correspondence, we should consider observed values in relation to these two reference
points.

Row 1 of Table 3 shows physical correspondence values for each of the four classes in
the BasicModel. For comparison, Row2 shows physical correspondence for theOrthogonal
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Table 3. Mean (standard deviation) of physical correspondence of different models.

BB BD DB DD Mean

Basic model 141.82 (1.73) 105.64 (8.65) 110.10 (6.65) 140.98 (2.39) 124.64 (3.74)
Orthogonal inputs model 71.09 (25.04) 57.00 (32.34) 69.08 (28.18) 55.55 (23.87) 63.18 (19.52)
No overlap model 73.28 (14.99) 72.91 (8.90) 68.16 (15.60) 66.76 (14.31) 70.27 (9.45)
Ring Model 99.01 (17.46) 75.65 (21.92) 83.93 (13.51) 110.02 (23.10) 92.15 (9.87)
Rueckl et al. (2008) 71.13 (4.86)

Notes: The PhysCorr values were measured in the full hidden unit space (not, e.g., the space of the dominant principal com-
ponents) in each case. See the text for descriptions of the various models. Values are in degrees. Standard deviations are
shown in parentheses. The mean value for the Rueckl et al. model was computed by computing a mean for each word
(across all positions) and then computing the means across these means. The standard deviation shown in the Mean
column gives the variation across means/runs (ignoring within-class variability).

Inputs Model mentioned in Footnote 3 above. The Orthogonal Inputs model has no struc-
ture in the input space (the inputs of all 36 tokens are orthogonal, equal-length vectors),
so there is no information about physical location in the input. Thus, the PhysCorr values
are close to themean random value. The No Overlap Model (Row 3) is a related case: in this
model, the input coding is the sameas in the BasicModel, but only every other token is used
(there are 40 input units and 9 tokens per class). In this case, there is no overlap between
adjacent words (the only overlap in the input encodings occurs when words in the same
position have the same first letter or the same second letter). Again, not surprisingly, since
there is no information in the input or the output specifying information about the prox-
imity relationships of words, the PhysCorr values are near the mean random value. We also
computed themean PhysCorr value from Rueckl et al. model (bottom row). The value is not
far from the mean random value and similar to the Orthogonal Inputs Model and the No
Overlap Model, although the standard deviation is smaller than in both these cases.

The low value in the Rueckl et al. model seems, at first glance, to indicate that physical
correspondence is not a feature of the positional encodings in thatmodel. However, further
analysis suggests a different view. Thepatternof input similarity in thatmodel ismuchmore
complicated than in our model, because the 2998 English words used to train that model
have letters in common in many different positions (not just adjacent positions). When we
measuredPhysCorr in theRueckl et al.model for just thosewords that have adjacent double
letters (e.g. “add”, “eel”), the value (mean = 79.65, SD = 4.43) was significantly higher than
length and frequency matched, non-double-letter controls (t(358) = 36.15, p < .0001).
Moreover, although words with double letters separated by one letter (e.g. “stitch”, “pipe”)
showed averages close to the minimum (mean = 63.23, SD = 2.82), when we computed
angles using every other position (e.g. stitch1–stitch3–stitch5, stitch2–stitch4–stitch6,
etc.), the mean PhysCorr was significantly higher than for frequency matched controls
(mean = 76.44, SD = 3.90; t(61) = 33.20, p < .0001).

These results suggest that the Rueckl et al.model exhibits physical correspondence of its
withinword encodings under conditions parallel to thosewherewe observed it in the Basic
Model, thus providing a motivation for looking more closely at the cause of the physical
correspondence.

3.3.2. Causes of physical correspondence
What is the source of the within-class physical correspondence in the Basic Model? To
answer this, it is helpful to understand how the learning process drives the model into the
hidden space configuration in Figure 2.
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First, as noted above, the velocity of separation of each target class is related to the aver-
age distance between members of the class. Since the pure classes (BB and DD) are more
distant, on average, fromeach other, than themixed classes (BD andDB), we expect separa-
tion along the first principal component (corresponding to the B vs. D contrast) to happen
earlier than separation along the second principal component. Indeed, every Basic Model
simulation showed this pattern.

Now, consider an idealisedweight set that approximates a learning stagewhen the pure
cases have separated but the mixed cases have not. For clarity of comprehension, it is con-
venient to think of an “Idealized Network” with only two hidden units, the hidden units
corresponding, respectively, to the first and second principal components in Figure 2. Thus,
we assume that theweights fromall Dunits to the first component are negative and fromall
B units are positive (and all these are equal inmagnitude). At this point, we also assume that
the training has produced an appropriatemapping from the first hiddenunit to the outputs
(turns onDDwhen the first hidden unit is negative and BBwhen the first hidden unit is pos-
itive). We also assume that all theweights from input to the second hidden unit are zero (no
separation along the second component yet) but that the initial weight randomisation has
produced an asymmetry in the output units that favours turning BD on when the second
hidden unit is negative and DB on when the second hidden unit is positive. For concrete-
ness, and without loss of generality, we can assume these weights have the values shown
in Tables 4 and 5.

When the Idealised Network is trained starting from this configuration, some of the
weights from the input to the second hidden unit will diverge from zero. In particular, the
average signal to the weights associated with peripheral positions is biased. For example,
the weight H2-B1 is adjusted only when the patterns BB1 and BD1 are presented. We may
assume that the activation function gain is high enough that BB1 produces no significant
error at this point. Therefore, the only force on H2–B1 is due to BD1 and this is a negative
force (due to the polarity of the hidden → output mapping). There is an equal negative

Table 4. Weights from input to hidden units (columns index
inputs, rows index hiddens) in the Idealised Network when the
first component has separated but the second has not.

1 2 3 4 5 6 . . . 19 20
B1 D1 B2 D2 B3 D3 B10 D10

H1 1 −1 1 −1 1 −1 1 −1
H2 0 0 0 0 0 0 0 0

Note: H1 and H2 are first and second hidden units.

Table 5. Weights from hidden to output units
(columns index hiddens, rows index outputs) in
the Idealised Network when the first component
has separated but the second has not.

H1 H2

1 B1 1 −1
2 D1 −1 1
3 B2 1 1
4 D2 −1 −1

Note: H1 and H2 are first and second hidden units.
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force on H2–D10 (from the pattern BD9), and corresponding (equal) positive forces on
H2–D1 and H2–B10. All of the other influences on the weights from input B2 add to zero
because of the symmetric behaviour of the non-peripheral units (e.g. H2–B2 receives a pos-
itive signal from DB1 and an equal, negative signal from BD2). Thus, on the first epoch
of training, only the peripheral weights are adjusted. On the second epoch of training,
however, the adjustment made on the first epoch changes the balance of forces on the
adjacent-to-peripheral units (B2, D2, B9, D9). Essentially, the progress toward separation of
the peripheral units results in reduction in the error on peripheral (mixed) patterns, so the
adjacent-to-peripheral units start to undergo error changes as though they were periph-
eral units, thoughmore weakly than the actual peripheral units (Appendix 1). We note that
this chain of successive causes and effects has the form of a “domino process”: one event
triggers the next, which triggers the next, etc. Since the changes are all symmetric with
respect to first vs. second position, and also symmetric with respect to the B/D contrast, the
following properties hold:

(1) wh2–Bi = −wh2–Di for i = 1 . . . 9
(2) wh2–Di is monotone decreasing andwh2–Bi is monotone increasing in i.

Moreover, when the number of epochs reaches half the number of positions, themono-
tonicity becomes strict, and remains so throughout training. Conveniently, with strict
monotonicity, Properties 1 and 2 above suffice to separate themixed cases. Figure 3 shows
the development over training of the input to second hidden unit weight pattern in the
Idealised Network. Alluding to Property (1), we refer to this pattern as the “Additive Inverse
Solution”. To see why the Additive Inverse Solution suffices to separate themixed cases, let
f (i) = wh2–Di and g(i) = wh2–Bi. Then, for � > 0,

f (i) = −g(i),

f (i) + g(i) = 0,

f (i) + g(i + �) > 0

Figure 3. Weight development in the IdealisedNetwork. Each curve showsweightwh2−(B/D)i for i rang-
ing across positions (the depicted run employed only 7 positions B1D1 . . . B7D7). The labels ej specify
the epoch numbers.
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because g(i) is strictly increasing and

f (i + �) + g(i) < 0

because f is strictly decreasing. Since the patterns DB are all of the form f (i)+ g(i+ �) (e.g.
DB1 = D1+ B2,� = 1) and the patterns BD are all of the form f (i+ �)+ g(i), the summed
functions separate the patterns.

This analysis, formalised in Appendix 1, predicts the U-shaped physical correspondence
in the second principal component exhibited by the mixed cases. It also predicts the linear
physical correspondence in the second component exhibited by the pure cases. As pre-
dicted by this analysis, when the Idealised Network was trained to zero error, it converged
on the hidden space structure shown in Figure 2 (and described in points i through iv) and
exhibited the Additive Inverse Solution shown in Figure 3. If the Basic Model is operating
on the same principles as the Idealised Network, thenwewould expect the second compo-
nent of the hidden unit displacements to approximate Figure 3 pattern. Indeed, each run
of the Basic Model showed such a pattern (Figure 4).

What does the analysis reveal about the cause of the pattern of encoding? Two points
are important: First, the physical correspondence stems only indirectly from the physical
configuration of the input – the domino process capitalises on the shared sensory nodes
of words in adjacent positions, leading to a progressive expansion of the use of the sec-
ond encoding component (H2 in the Idealised Network). This gives rise to an encoding that
exhibits partial, but not total physical correspondence – adjacent members are encoded
near each other, but there is curvature in the mixed cases such that XYk and XY(9−k+ 1)
have the same second component value.5 Second, the discovery of the Additive Inverse
solutiondependson theexistenceof a representationally-irrelevant asymmetry in the input
(the contrast betweenperipheral and central positions).We takeup thesepoints in theGen-
eral Discussion, considering their implications for distinguishing connectionist and classical
treatments of the nature of perception.

Figure 4. Weight development in the basic model. Each curve shows a letter across positions projects
onto the second component. The labels ej specify the epoch numbers.
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3.4. Testing the role of asymmetry: the RingModel

An interesting further prediction of this analysis is that, if there is no distributional asymme-
try between the constituents of the peripheral and non-peripheral cases, then themodel is
very unlikely to develop the additive inverse solution. This is because the additive inverse
solution depends on a symmetry of the second component weights (wh2–Bi = −wh2–Di)
Without the structuring provided by the physical asymmetry of the input distributions,
the network has to rely on random processes (the initial weight setting and the random
sequencing of the patterns during training) to discover the relevant weight symmetry.
Since 20 weights are involved, the chances of producing an effective approximation of this
configuration randomly are exceedingly small.

To test the importance of the asymmetry, we designed the Ring Model. This model has
only 18 input units. All of the input patterns are the same as in the basic model, except
that the patterns labelled XY9 have inputs of the form [Y1, X9] (for example, BD9 has D1
and B9 on, all other units off). Thus, the inputs to this model lie on a ring and they have no
peripheral-central asymmetry. As predicted, this model develops hidden unit separation
along a component that distinguishes B from D, but it fails to develop a significant sec-
ond component. Not surprisingly, the model fails to completely learn the map: it predicts
the pure cases well, but fails to distinguish the BD from the DB mixed cases. Moreover, as
shown in Table 3, themodel fails to develop within-class physical correspondence at levels
comparable to those of the Basic Model.

4. General discussion

4.1. Summary

We have described a feedforward neural network that learns to classify structured objects
position independently. The objects are simple analogs of word stimuli. Two results stand
out: the model exhibits an analog of the empirically attested TL–RL asymmetry and it
exhibits within-class physical correspondence – that is, within the classes of stimuli defined
by the task, the model employs a context-sensitive encoding that bears a resemblance to
the spatial organisation of the stimuli themselves. Our analyses helped show how these
features arose through the interaction of the learning mechanism with the data. Now we
discuss implications of these findings for theories of writtenword perception and ofmental
encoding more generally.

4.2. TL–RL asymmetry and theories of written word perception

RegardingTL–RL asymmetry, the analysis shows that thegreater similarity between individ-
ual TL pairs than RL pairs arises because of the overall similarity of the classes towhich these
individual pairs belong. Specifically, the class of BD words has more letter-instantiations in
commonwith the class ofDBwords than the class of BBwords has in commonwith the class
of DDwords. This property stems from the functional structure of the task: the fact that the
same physical object (e.g. D2) plays one role (onset) in one class (DB) and a different role
(coda) in another class (BD). Thus, thepredictions of the current frameworkdiffer from those
of frameworks that claim that the TL-RL asymmetry is the result of uncertainty in the per-
ception of position (e.g. Davis & Bowers, 2006; Gomez et al., 2008; Grainger & Van Heuven,
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2003; Whitney, 2001; see Grossberg, 1978) and is independent of the functional structure
of the task. The functional hypothesis, but not the uncertainty hypothesis, predicts that TL-
RL effects should be reduced if the classes share less structure. The functional hypothesis
is thus consistent with the results of Lee and Taft (2009) who found that TL-RL effects are
muchweaker for readers of KoreanHangul, where onsets and codas are positioned system-
atically differently within each written character. The functional hypothesis also suggests
that letter transposition effects should be sensitive to the structural roles that letters play –
for example, confusability shouldbedifferent if elements are exchanged across similar roles
(e.g. exchanging two consonants) as opposed to across contrasting roles (e.g. exchanging
a vowel and a consonant). The positional uncertainty view expects physical proximity to
increase similarity regardless of structural role.

4.3. The status of symbolic theories

We asked at the beginning, whether the recent theories, which emphasise contextually
specific mental encoding, require a reformulation of symbolic theories of mental repre-
sentation, or if there is a trivial fix, via, for example, the notion of peripheral resonance. To
make our arguments explicit, we focus on a version of the symbolic theory whose core is
compositionality. Based on the findings reported in the body of the paper, we argue that,
for the model and environment considered here, while symbolic insights are partially rele-
vant, the contextual dependence observed is of a kind that does not fit within this symbolic
framework. These considerations do not argue for or against the claim that humans employ
symbolic computation, but they help make precise an alternative to the symbolic account.

We focus, for clarity, on one representative of the symbolic view: model theoretic syn-
tax/semantics (Dowty, Wall, & Peters, 1981; Heim & Kratzer, 1998). This view assumes that
there is a syntax that specifies ways in which complex symbols are built out of other com-
plex symbols or primitive symbols by concatenation. Both kinds of symbols correspond to
sets of entities in the world. For each rule of concatenation, there is a rule of semantic inter-
pretation which says how the set in the world corresponding to the complex symbol the
rule produces is derived from the sets in the world corresponding to the constituent sym-
bols. This rule provides the semantics for all symbols that can legally be constituents in the
rule.

When we say that this framework is the “essence” of the symbolic theory, we are allud-
ing to claims that the model theoretic framework is all that cognitive science needs to care
about. For example, (Fodor & Pylyshyn, 1988) note that an appealing property of the frame-
work is that the syntactic system affords physical implementation (in logic gates), but the
details of the physical implementation are independent of the structural principles just out-
lined; in other words the framework is multiply realisable. This view amounts to a profound
form of modularity – it says that a line can be drawn between the “implementation” level
and the “compositional” (or “cognitive” or “representational” or “symbolic”) level6 such that
all the insights that cognitive science needs to discover are insights about the organisation
of the compositional level. The implementation level can be ignored.

An interesting property of the Basic Model is that part of it (the hidden-output layer
weights) implement a compositional system. In particular, one dimension (X′) of the hidden
space visitation set is a variable whose (two) values are primitive symbols. These primitive
symbols in the “syntax” of the network’s mental system correspond, respectively, to “words
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with B in the first slot” and “words with a D in the first slot”. Such words are objects in the
world that the network inhabits. An orthogonal dimension (Y′) similarly “represents” the
second slot.

What, then, of the input-hidden weights? On Fodor and Pylyshyn’s story, these weights
should either be another part of the compositional system which also exhibits canonical
intentionality, or they should be part of the “implementation” and thus not relevant to
explaining cognition. We will argue that the input-hidden map does not have composi-
tional syntax and semantics and yet a theory of the network’s mental system can hardly
afford to ignore it.

There are three points:

(1) The input-hiddenmaphas similarities to a compositional system,but it doesnot appear
to be one. For example, let us assume that the model is implemented as a real device
for providing what amount to “phonological transcriptions” of written words shown
in various physical positions. The within-class physical correspondence in the hidden
space, which stems from the form of the input-hidden map, looks like a kind of “rep-
resentation” of the positions of words in the world. It could even be used to make
some correct inferences – for example, that a small shift in gaze direction will turn
BB6 into BB5. However, the extension of this inference to the mixed peripheral cases
yields some erroneous conclusions (e.g. BD1 is adjacent to BD9 in hidden space, but
not in the world). More generally, the mixed class physical correspondence is different
from the pure class physical correspondence. These observations cast doubt on the
hypothesis that the within class similarities are representations. Moreover, the analy-
sis has shown that these similarities, such as they are, exist because of the role they
play in mapping orthographic forms to phonological encodings, which, as we have
noted, has a representational structure in the form of slot codes. If the input-hidden
map happened to produce a perfect (unwarped) physical correspondence in support
of the hidden-output compositional map, then we would be justified in claiming that
“representation” is an accurate description of both levels. This is the way researchers
have often thought about models like McClelland and Rumelhart’s (1981) Interactive
Activation model of word and letter perception: the model “represents” the world
simultaneously at the feature level, the letter level, and the word level. However, in the
present case, given that the warped similarities arose in support of the hidden-output
representational system, it is not clear that we should consider the input-hidden map
representational.

(2) As shown by the analysis, TL-RL effects (as construed in this network) depend on both
the asymmetry of the principal components (first larger than second) and the inverse
relationship between the two pure class similarities. Both of these features stem from
the structure of the input-hiddenmap. Ifwe take the analogywith realwordperception
at face value, then the encoding differences are responsible for the fact that people are
more likely to perceive a TL stimulus as the word it was derived from than they are to
perceive an RL stimulus as such. Althoughwe, as researchers, and the perceivers them-
selves (on more careful inspection) may interpret such behaviours as “errors”, they are
nevertheless an aspect of our perceptual structure that the theory of cognition may
do well to attend to. The case would be different if the errors had a random distribu-
tion, with TL and RL stimuli equally likely to be erroneously mistaken for words – then
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the claim that the classical model fully describes the structure of perception would be
reasonable – the error-tendencies could be treated as a uniform fuzzing of the struc-
tural picture, not requiring any nuance (e.g. dimensional asymmetry/curvature) in our
account of the correct encodings.

(3) The analysis showed that the network’s discovery of the representational scheme of
the hidden-output weights depended on a physical asymmetry in the input structures.
In particular, multiple Ring Model simulations, in which the physical asymmetry was
absent, failed to discover a solution to the map. One might wonder if the Ring Model’s
failure stems from an architectural inability of the model to solve the Ring Task. It does
not: Appendix 2 gives an example of a weight set that solves the Ring task. The analy-
sis of the Basic Model showed that, to solve the Ring Task with a system derived from
that of the Basic Model, the system would have to break the initial symmetry of the
input-hidden weights in a particular way that would be highly unlikely to happen by
chance. This suggests that the physical asymmetry of the inputs, which spurs the dis-
covery of the delicate symmetry breaking in the BasicModel is an important element of
the model’s facility for knowledge discovery. This contrasts with Fodor and Pylyshyn’s
arguments: if the computational/compositional level of analysis is independent of the
peculiarities of implementation, the input asymmetries should play no role. If we were
to adopt their position, we would run the risk of overlooking this critical detail of how
the Basic Model solves the perceptual task and its implications for the form of the
hidden-layer encoding.

We remark, by way of conclusion, that this detail may open a helpful avenue of
future investigation. It is challenging to get neural feedback systems to learn complex,
symbolically structured tasks (see Bengio, Simard, & Frasconi, 1994; Tabor, 2003; Tabor,
Cho, & Szkudlarek, 2013). The feedback interaction between the network and the envi-
ronment must drive the input-hidden weights to undergo complex, coordinated role-
differentiation.7 The randomisation of the initial weights seeds this role differentiation.
Whenever a random process assists in structure discovery, we should ask to what extent
the random process is doing the work of the discovery. If, in fact, the random weight seed
were doing all the work of endowing the input-hidden map with a suitable topology, and
the training simply served to configure thehidden-outputweights to take advantageof this
topology, then there would be little to be gained by studying the geometry of the network
encodings. But, in the present case, as we noted in the Idealised Network investigation, the
weight randomisation only has to make a very simple choice – it has to decide whether BD
should be positive and DB negative, or vice versa, a very easy choice for a random process.
Once that choice is made, the interaction of the network with the training environment
drives the domino process to reach an effective encoding.

This observation suggests asking for what learning tasks there are domino pathways to
the construction of complex symmetries. The answer to this question can be positive even
in cases where the network fails to learn: we seeded a version of the Ring Network with
small values proportional to those given in Appendix 2 for just theweights B1-1, B1-2, B1-3,
D1-1, D1-2, D2-4, B10-1, B10-2, B10-4, D10-1, D10-2, D10-3 (a total of 12 weights), and the
network reliably created appropriate differentiation in the other 72weights andbiases gov-
erning the hidden units, thereby succeedingwith the Ring Task. Even though guessing this
12-weight configuration by randomising the initial weights is very unlikely to be successful,
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the fact that it exists indicates that a set of domino-pathways to solution (at least 10 of
them, by symmetry) lies close to the unbiased initial state (all weights zero). These path-
ways exist because of a symmetry in the problem: changing the position of aword does not
change its pronunciation; a useful research avenue then, may be to establish techniques of
discovering such domino pathways from problem symmetries.

Summarising, the considerations mentioned above provide some impetus against the
strongmodular perspective and in favour of whatmight be called the “full physical picture”
perspective: cognitive science needs to take seriously the physical nature of organisms and
their environments; although the classical symbolic view is committed to physical instanti-
ation, it overlooks a possible role that variation in physical instances not directly relevant to
those abstractions plays in thediscovery of those abstractions and in determining the struc-
ture ofmental encodings. Themodels discussedhere alsooffer examples of howsomething
thatmay look, at first glance, like a brain simulacrumof environmental structuremay not be
precisely that (recall the curvature across position encodings), and may arise in an indirect
way from a regularity in the environment. Finally, building on the suggestion that symbols
are not atomic but have a complex internal structure with complex gestation, the results
suggest pursuing an understanding of complex learning by studying “domino pathways”
of cause and effect in the learning process.

Notes

1. Mental simulation of the world should not be confused with perceptual simulation (Barsalou,
1999), which refers to conceptual representations that are simulations of perceptual represen-
tations.

2. Weuse the term“similar” tomean “same in form”.Whereas ingeometry, similarity is abinaryprop-
erty (two shapes are either similar or not), we refer here to degrees of similarity. Below,weprovide
a quantitative definition in order to measure degrees of physical correspondence in particular
models.

3. The lowest dimensional point-set that exhibits the inter-target distances in Table 1 is a square
with BB and DD at diagonally opposite vertices and BD and DB also diagonally opposite. In fact,
if we replace the actual inputs of the model with the indexical bit vectors in R – that is, a unique
unitwith activationone and the rest zero for each input – anencodingwhich lacks asymmetries in
the input space, then train that model (the “Orthogonal Inputs Model”), the hidden unit pattern
closely approximates a square with this structure. This square is roughly similar to the hidden
pattern of the Basic Model (as shown in Figure 2), but it lacks two properties of central interest
here: a TL/RL asymmetry and physical correspondence of the within-class encodings.

4. The current model ignores the fact that people can read words displaced above and below as
well as to the left and the right of their focus, that they can perceive words in non-horizontal
orientations, and, as noted above, that they can read them in continuously varying positions, at
least within a small visual angle surrounding the focal point.

5. The reader may have noted that there is also curvature in the first component. This also dis-
torts the encoding away from perfect physical correspondence. This curvature may occur in part
because the separation of DB and BD on the second component causes the pure cases to array
themselves oppositely on this component, and this, in turn creates opportunities for elements to
reduce error by adjusting on the first component, but we do not, at present know why the first
component curvature takes precisely the form it does.

6. In the terms of Marr (1982), we are concerned here with the separation between the “implemen-
tation” and the “algorithmic” level.

7. This process is an instance of what is called self-organisation – cases where continuous feedback
interactions amongmany small, interacting elements give rise to organised structure at the level
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of the ensemble (Haken, 1983; Johnson, 2002; Koschmieder, 1993; Kukona, Cho, Magnuson, &
Tabor, 2014; Kukona & Tabor, 2011; Tabor & Hutchins, 2004; Tabor, Galantucci, & Richardson,
2004; Zhabotinsky, 1991). Self-organisation is plausibly central in the formation of complexmen-
tal structure, but a general formal theory of self-organisation is lacking (see Bak, 1996; Jelinek,
1990 for relevant forays in physics). The phenomenon we refer to here by the term “domino
pathway” may be a useful focus point for a general theory of self-organisation.
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Appendix 1

Consider the simplified network described in Section 3.3.1. Suppose that, at some point in training,
the network’s weights satisfy the following conditions:

wOB1−H2 = wOD2−H2 = woh

wOD1−H2 = wOB2−H2 = −woh (A1)

woh � 0

wH2−B1 > wH2−B2 > · · · > wH2−Bk

wH2−D1 < wH2−D2 < · · · < wH2−Dk

1 < k <
n

2
(A2)

wH2−Di = −wH2−Bi

1 ≤ i ≤ n. (A3)

The weights, wH2–X1, . . . , wH2–Xk then satisfy the strict monotonicity condition described in
Section 3.3.1. We wish to show that further training will cause the system to completely satisfy the
strict complementary montonicity condition, that is, that the above relations will eventually hold for
k = n and this situation will hold at all future times). Suppose the error function is structured so that
wH2–Bk increases from this point but does not become as large as – wH2–D(k−1). Then, if WH2–Bk is
zero, it will become positive at the next time step. Likewise, by symmetry,WH2–B(n−k+1) will become
equally positive at the next time step, andwH2–Dk andWH2–D(n−k+1) will become equally negative at
the next time step. If these four weight values have alreadymoved away from zero, theywill continue
to do so, but their absolute value will never reach wH2–B(k−1). Consequently, after n/2 time steps, the
relationships (A1)–(A3) will hold for k = n and they will continue to hold throughout training.

If it is also the case that, initially, the following inequalities hold,

wH2−B1 < wH2−B2

wH2−D1 > wH2−D2

wH2−Bn > wH2−B(n−1)

wH2−Dn < wH2−D(n−1)

(A4)

then, bymathematical induction, the systemwill, in finite time, satisfy (A1)–(A3) for k = n and remain
in this state through all future time steps.

We assume that all the weights wH2–Xi start out at zero (this approximates the situation in the
Basic Model, where these weights start with small random values and these values do not change
much during the initial growth of the weightswH1–Xi).

A1.1 Base case
To establish the base case (A4), we focus on the first inequality, and note that only the patterns BB1
and BD1 have non-zero activation of B1 and only the patterns BB1, BB2, DB1, and BD2 have non-zero
activationof B2. Therefore,we can ignore all other patterns indetermining the initial changeofwH2–B1
andwH2–B2. The weights from the input to H1 are set so that the networkmakes essentially zero error
on BB1 and BB2. Therefore, BD1 is the only pattern that will significantly influencewH2–B1. The values
of the hidden-to-output weights imply (via backpropagation) that training for one time step on BD1,
will make wH2–B1 grow positive. Similarly, the only training patterns that induce change in wH2–B2
under the circumstances are DB1 and BD2. This time, the values of the hidden-to-output weights
imply equal and opposite changes when DB1 and BD2 are presented (given thatwH2–D1 and wH2–D3
are zero). Therefore, on the first time step, wH2–B2 remains equal to zero. In other words, after one
time step, the first inequality in (A4) will become true. By symmetry, the remaining (A4) inequalities
will also become true on this time step. Thus, the base case is established.
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A1.2 Induction step
We examine the derivative of the error function with respect to the weight wH2–Bk (1 < k < n)
when (A1)–(A3) hold. We will show that when wH2–Bk = wH2–B(k−1) this partial derivative is positive
while when wH2–Bk = wH2–B(k+1) this partial derivative is negative. Analogous conditions hold for
wH2–B(n−k+1),wH2–Dk, andwH2–D(n−k+1).

The first derivative of the (cross entropy) error function with respect to input weight wij on
presentation of a particular pattern p is given by

∂Ep
∂wij

= −f ′(netpi)

(∑
k

wkiδpk

)
apj ,

where netpi is the net input to (hidden) unit i, f (x) is the hyperbolic tangent function,wki is the weight
from hidden unit i to output unit k, δpk = tpk − apk where tpk is the target value for output unit k on
pattern p, apk is the activation of output unit k, and apj is the activation of input unit j (Rumelhart,
Durbin, Golden, & Chauvin, 1995).

Suppose wH2–BK = wH2–B(k−1). The two relevant patterns are p = DBk−1 and p = BDk . We con-
sider each of these in turn, dropping the p subscript since we are focusing on one pattern at a
time:

• p = DBk−1:

Target = [0, 1, 1, 0]

netH2 = wH2−D(k−1) + wH2−Bk = 0

sincewH2−Bk = wH2−B(k−1) = −wH2−D(k−1) by (A3)
Thus,

f ′(netH2) = f ′(0) = 1
2
(1 + 0)(1 − 0) = 1

2∑
k

wkiδpk = woh(0 − sig(neto1)) − woh(1 − sig(neto2))

− woh(1 − sig(neto3)) + woh(0 − sig(neto4)).

Since netH1 = 0 aswell (because theD and B inputs to H1 are balanced), sig(netOk) = ½ for k = 1,
2, 3, 4. Therefore,

∑
k

wkiδpk = woh

(
0 − 1

2

)
− woh

(
1 − 1

2

)
− woh

(
1 − 1

2

)
+ woh

(
0 − 1

2

)
= −2woh.

Since aBk = 1,

∂EDBk−1

∂wH2−Bk
= −1

2
(−2woh) = woh

• p = BDk:

Target = [1, 0, 0, 1]

netH2 = wH2−Bk + wH2−D(k+1) ≤ wH2−Bk

sincewH2−Bk = wH2−B(k−1) > −wH2−D(k+1) by (A3)
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Moreover, since wH2–D(k+1) ≤ 0 and wH2–Bk > 0 (by (A2)–(A3)), netH2 > 0. Thus

f ′(netH2) <
1
2
.

Let ε = f (netH2). Then ε > 0. As above, netH1 = 0, so∑
k

wkiδpk = woh(1 − sig(wohε)) − woh(0 − sig(−wohε))

− woh(0 − sig(−wohε)) + woh(1 − sig(wohε)),

where sig(x) = 1
1+e−x is the logistic function.

Thus, ∑
k

wkiδpk = 4
(
1
2

−)
woh < 2woh,

where 1
2

− = sig( − wohε) = 1 − sig(wohε).
Again, aBK = 1, so

∂EBDk

∂wH2−Bk
= −xy.

Where ½ > x > 0 and 2woh > y > 0.
Therefore,

∂EBDk

∂wH2−Bk
= w−

oh.

Wherewoh > w−
oh > 0. Putting these two values together yields:

∂E

∂wH2−Bk
= woh − w−

oh > 0.

An analogous argument shows that whenwH2–BK = wH2–B(k+1),

∂E

∂wH2−Bk
< 0

as desired.

Appendix 2

Here we present one of the solutions for the Ring input. We used the same three layer feedforward
model as Basic Model. Instead of 2 hidden nodes, there are four hidden nodes in this solution. The
first two hidden units are similar to those of the Idealised Network. Here we assume that the weights
from the input units to the first two hidden units are all positive for B units and all negative for D
units. However, the absolute values increasemonotonically with position for the first hidden unit and
decrease monotonically with position for the second hidden unit. The third hidden unit detects the
input, D1B10. The fourth hidden unit detects the input, B1D10.

Table A1. Weights from input to hidden units
(columns index inputs, rows index hiddens).

1 2 3 4 5 6 . . . 19 20
Bias B1 D1 B2 D2 B3 D3 B10 D10

H1 0 1 −1 2 −2 3 −3 10 −10
H2 0 10 −10 9 −9 8 −8 1 −1
H3 −12 7 0 0 0 0 0 0 7
H4 −12 0 7 0 0 0 0 7 0
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Table A2. Weights from hidden to output units
(columns index hidden units, rows index outputs).

Bias H1 H2 H3 H4

1 B1 −4 0 10 −20 20
2 D1 4 0 −10 20 −20
3 B2 −4 10 0 20 −20
4 D2 4 −10 0 −20 20
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