
Recursion and Recursion-
Like Structure in Ensembles

of Neural Elements

Whitney Tabor
University of Connecticut
whitney.tabor@uconn.edu

Connectionist models have used general principles to model phenomena across
many mental domains. Thus, they seem promising for uniting diverse syntactic phe-
nomena (e.g., language, music, action). A challenge has been understanding how
recursion can work in neurons. Headway has been made in training Recurrent Neural
Networks (RNNs) to process languages which can be handled by the use of one or
more symbol-counting stacks (e.g., anbn, anAmBmbn, anbncn). Success with exponen-
tial state growth languages, in which stacks function as full-fledged sequence memories
(e.g., palindrome languages, certain natural language relative clause constructions),
has not been as great. [24] introduces Fractal Learning Neural Networks (FLNNS),
showing that they can learn some exponential state growth languages with high ac-
curacy. The current paper analyzes the performance of these FLNNs clarifying the
relationship between their imperfect, but nevertheless structurally insightful, neural
recursive encoding, and the perfect recursive encodings of symbolic devices.

1 Introduction

Recurrent neural networks (RNNs) of sufficient size can implement Turing ma-
chines [14, 21] and thus perform the same computations as symbolic comput-
ing mechanisms. It has been difficult, however, to successfully train RNNs
to learn arbitrary infinite-state languages. This paper focuses on RNN learn-
ing of context-free languages (CFLs), the smallest class of infinite state lan-
guages on the Chomsky Hierarchy [3], and the class that forms the founda-
tion of many formal theories of natural language syntax. (Online Appendix

wtabor
Typewritten Text
Tabor, W. (2011). Recursion and Recursion-Like Structure in Ensembles of Neural Elements. Sayama, H, Minai, A., Braha, D., & Bar-Yam, Y. (eds.) Unifying Themes in Complex Systems. Proceedings of the VIII International Conference on Complex Systems. pp. 1494-1508. http://necsi.edu/events/iccs2011/proceedings.html

1—http://solab.uconn.edu/People/Tabor/papers.html—provides definitions of
terms.) An early effort to let a sequential neural symbol processor induce a
context free language used a neural controller to manipulate a separate neural
stack [22]. More recently, several projects have been able to induce the stack
mechanism itself, as well as the controller, in the network’s hidden units. Suc-
cessful results have been obtained for languages that use one or more stacks as
“counters”. For example, a Simple Recurrent Network (SRN, [4]) trained by
[27] correctly learned the corpus of sentences from the language anbn with up
to 11 levels of embedding and generalized up to 18 levels. [2] found that the Se-
quential Cascaded Network (SCN) of [15] achieved generalization considerably
beyond the training set on anbncn, a context-sensitive language.

Because infinite-state languages involve arbitrarily long temporal dependen-
cies, these projects have struggled with the well-known exponential decay of the
error signal over time in standard RNN training regimens—see [8]. Therefore, [9]
developed Long Short-Term Memory (LSTM) networks, which employ a special
kind of unit that maintains constant error flow across arbitrarily long dependen-
cies. Indeed [6] found that LSTM networks trained on examples from anbn and
anbncn with at most 10s of levels of embeddings generalized perfectly to 1000s of
levels (see [24]). LSTM networks also did well with the “restricted palindrome
language”, anAmBmbn, far exceeding the performance of previous RNNs.

Whereas formal automata are naturally suited to modeling formal symbolic
languages, where what matters is what occurs, not how often it occurs, learning
neural networks are sensitive to statistical properties of their training data. Since
symbol-processing RNNs combine these viewpoints, it is helpful to establish
terminology for discussing probabilities of symbol sequences.

A corpus-distribution is a map from each prefix (i.e., sequence of words from
the vocabulary) to a probability distribution over next-words. The probability
of a word sequence is the product of the probabilities of the successive word-to-
word transitions within it. A word sequence is a generable string of a corpus-
distribution if it has nonzero probability. A machine correctly processes a gener-
able string from a corpus distribution if, upon being presented with each symbol
of the string in succession, it accurately specifies the probabilities of the symbols
that follow. An activation vector accurately specifies a probability distribution
if it is closer to the correct distribution than to any other distribution associated
with a symbol transition in the corpus. This method of assessing correctness is
equivalent to the method used by a number of neural net researchers in cases
where only one next-word is possible: count the prediction as correct if the acti-
vation of the unit associated with the correct next word is above 0.5 [17, 2, 18].
The current method has the advantage of also being useful in cases where non-
absolute probabilities are involved.

The languages mentioned so far constitute a proper subset of stack-
manipulation languages. In particular, all of them can be modeled with a device
that counts stack symbols on one or more stacks [6, 17]; none require keeping
track of arbitrary orders of the symbols on the stack. For example, to process
anbncn, one stack can count up as the a’s occur and down as the b’s occur; a

second stack can count up as the b’s occur and down as the c’s occur. There
are many stack-manipulation languages, even within the set of context-free lan-
guages, which require keeping track of the order, as well as the number, of stack
elements. For example each sentence in wWR (a palindrome language) consists
of strings that can be divided in half such that each half is a mirror-image (under
homomorphism) of the other half—e.g. “a b a a A A B A”.

The state growth function of a language L is the function which specifies, for
each possible sentence-length, n, how many states a computer must distinguish
in order to correctly process all strings of length ≤ n from L. Infinite-state lan-
guages which require keeping track of arbitrary orders of elements on their stacks
(like wWR) are exponential state-growth languages. [24] provides evidence that
most prior efforts at learning infinite state languages with RNNs have achieved
high accuracy with linear or quadratic state growth languages, but not with
exponential state growth languages.

2 Dynamical Automata and Fractal Learning
Neural Networks

Putting aside the problem of learning exponential state growth languages, [12],
[21], [23], [1], and [25] show that fractal sets provide a natural framework for
encoding recursive computation in analog computing devices.

2.1 Pushdown Dynamical Automata for Context Free
Languages

[23] defines dynamical automata for processing symbol sequences in a bounded
real-valued activation space. A dynamical automaton (or “DA”) is a symbol
processor whose states lie in a complete metric space. The DA must start at
a particular point called the start state. It is associated with a list of state
change functions that map the metric space to itself, a vocabulary of symbols
that it processes, and a partition of the metric space. An Input Map specifies, for
each compartment of the partition, a set of symbols that can be grammatically
processed when the network is in the current partition, and the state change
function that is associated with each symbol. Online Appendix 2 provides a
formal definition.

[23] defines a subset of Dynamical Automata, called Pushdown Dynamical
Automata (PDDAs), that behave like Pushdown Automata (PDAs—see online
Appendix 1). PDDAs travel around on fractals with several branches. Their
functions implement analogs of stack operations: pushing, popping, and ex-
changing symbols. Pushing involves moving to a part of the fractal where the
local scale is an order of magnitude smaller than the current scale; popping is
the inverse of pushing; and exchanging involves shifting position at the largest
scale without changing the scale. [23] shows that the set of languages processed

Table 1: The Input Map for Pushdown Dynamical Automaton 1 (PDDA 1). The
initial state is

(
0
0

)
. When the automaton is in the state listed under “Compartment”,

it can read (or emit) the symbol listed under “Input”. The consequent state change is
listed under “State Change”.

Compartment Input State Change
z1 < 0 and z2 < 0 b ~z ← ~z +

(
0
2

)
z1 < 0 and z2 > 0 c ~z ← 2(~z +

(
1
−1

)
)

Any a ~z ← 1
2~z +

(−1
−1

)

Table 2: Grammar 1. Parentheses denote optional constituents, which occur with
probability 0.2 in every case. A probability, indicated by a decimal number, is asso-
ciated with each production. The probabilities are irrelevant for implementation of a
dynamical automaton but are useful for generating a corpus which can be used to train
a FLNN.

1.0 S → A B C 1.0 A → a (S) 1.0 B → b (S) 1.0 C → c (S)

by PDDAs is identical to the set of languages processed by PDAs, that is to say,
the Context Free Languages [11].

Table 1 gives an example of a PDDA for processing the sentences generated
by the grammar shown in Table 2. PDDA 1 always starts at the origin of
the space z1 × z2 at the beginning of processing a sentence; it must move in
accordance with the rules specified in Table 1; if it is able to process each word
of the sentence and return to the origin when the last word is read, then the
sentence belongs to the language.

In order to successfully process Language 1 with a symbolic stack, it is nec-
essary to store information on the stack whenever an “a b c” sequence is begun
but not completed. If A is stored when “a” is encountered, and B is stored
when “b” is encountered, then the possible stack states are the members of {A,
B}*. As Figure 1a shows, PDDA 1 induces a map from this set to positions on a
fractal with the topology of a Sierpinski Gasket [1]. Figure 1b provides an exam-
ple of the states visited by the automaton as it processes the center-embedded
sentence, “a b a a b c b c c”.

2.2 Insight from Prior Training Results

[17] trained a SRN on several context free languages. Although the networks did
not achieve high accuracy on exponential state-growth languages, [17] was able
to examine the network weights and construct effective solutions, using a linear
recurrent map in place of the SRN’s sigmoidal hidden unit activation function.
For example, based on a network trained on wWR, [17] defined the hidden-layer

a.
−2 −1.5 −1 −0.5 0

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A

AA
AAA

BAA

BA

ABA

BBA

B

AB
AAB

BAB

BB

ABB

BBB

z1

z2

b.
−2 −1.5 −1 −0.5 0

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1. a

2. b

3. a

4. a

5. b

6. c

7. b

8. c

9. c

z1

z2

Figure 1: a. The stack map of PDDA 1. Stack-states (labeled) are associated with
the apices of rightward-pointing triangles. Each letter in a label identifies a symbol on
the stack. The top-of stack is the right-most letter in each label. b. The trajectory
associated with the sentence, “a b a a b c b c c”, from Language 1. “1.” identifies the
first word, “2.” the second, etc.

map shown in (1)-(2).

~zt = f(

0.5 0 0 0
0 0.5 0 0
2 0 2 0
0 2 0 2

 · ~zt−1 +

0.5 0.5 −5 −5
0.4 0.1 −5 −5
−5 −5 −1 −1
−5 −5 −0.8 −0.2

 · ~It) (1)

fi(ni) =

0, ni < 0
zi, 0 ≤ ni ≤ 1
1, 1 < ni

 (2)

The input, It, is encoded as a = (1, 0, 0, 0); b = (0, 1, 0, 0); A = (0, 0, 1, 0); B
= (0, 0, 0, 1). For the “push” operations associated with the symbols “a” and
“b”, the third and fourth dimensions have fixed values, so it is possible to graph
the important state changes. Figure 2a shows the set of all states visited by the
map as it processes all possible initial sequences of a’s and b’s down to seven
levels of embedding (the “push set”).

Figure 2a makes it clear that Rodriguez’s gleaned model uses the same kind
of stack mechanism as a PDDA. Two insights from this and other prior work
help with the challenge of learning exponential state-growth languages: (i) as
[17] and [10] point out, the fractal scaling solution depends critically on being
able to invert the scale changes. SRNs do this by using the linear region of their
activation function to approximate multiplicative inverses. But the imperfection
of the approximation leads to inaccuracies at high levels of embedding—hence
the use by [17] of the piecewise linear function, f . The FLNNs discussed in
the next section avoid the nonlinear distortion by using linear recurrent units

a.
0.5 0.6 0.7 0.8 0.9 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A

AA

AAA

BAA

BA

ABA

BBA

B

AB
AAB

BAB

BB

ABB

BBB

z1

z2

b.
Input

a b c

Hidden 1 (Linear)

Hidden 2 (Gaussian)

Output (Softmax)

a b c

Figure 2: a. Push set for map gleaned by [17]. b. FLNN for Grammar 1.

in the learning model. (ii) Part of the complexity of the solution embodied in
equation (1) lies in the use of a rotation when the network crosses the midpoint

of a palindrome. (This rotation is accomplished by the submatrix
[

2 0
0 2

]
in

the third quadrant of the recurrent weight block in (1)). The rotation has the
effect of mapping the whole push-set into a new subspace so the network can
easily tell whether it is in push- or pop-mode. This solution is somewhat akin
to doing a global symbol substitution across the stack in a PDA. it preserves
the stack structure while changing the identity of every element in it. A simpler
solution with a PDA is to use a control-state variable to keep track of whether
the midpoint has been passed. Indeed, [23] handles such cases with DAs by
invoking an additional dimension which encodes the analog of a control state
change. Suspecting that learning the rotation or the control state change might
be difficult for a network, I have focused here on cases in which a stack alone is
sufficient—no separate control variables are needed.

2.3 Fractal Learning Neural Networks (FLNN’s): Imple-
mentation of Dynamical Automata in RNNs

Figure 2b shows a Fractal Learning Neural Network (FLNN), one way of im-
plementing a dynamical automaton in artificial neurons. The input layer uses a
one-hot encoding for words of the vocabulary, as in [4]. The first hidden layer
is recurrently connected. The input layer has two kinds of projections to the
first hidden layer: first-order connections project directly to the hidden units;
second-order connections control the weights on the recurrent hidden connec-
tions. The first hidden layer has a linear (identity) activation function. All
maps are discrete. The following is a general form of the update rule for the
first hidden layer:

zi(t) =
∑

j∈Inputs

wijaj(t) +
∑

k∈Hidden1

∑

j∈Inputs

sikjzk(t− 1)aj(t) (3)

Here, t indexes time, aj is the activation of the j’th input unit, and zi is the
activation of the i’th first hidden layer unit; wij is the (first-order) weight on the
connection from unit j to unit i; sikj is the (second-order) weight from input
unit j and the previous state of hidden unit k to the current state of hidden
unit i. Because the PDDA analysis indicates that only the self-weights need
to be manipulated for handling context free grammars and it suffices to use the
same contraction/expansion factor across all hidden dimensions for a given word,
one can set all the non-self-connections in Hidden1 to 0 and define sj = siij .
Moreover, because the input vectors are “one-hot” codes, the description can be
further simplified by defining zi(t, j) to be the value of zi(t) when unit j is the
activated input:

zi(t, j) = wij + zi(t− 1)sj (4)

Equation (4) should be compared to the equations in the “State Change” column
of Table 1, which it implements.

The Hidden1 units have first-order connections to the units in Hidden2.
These second hidden layer units have gaussian activation functions:

gi(t) = exp

[
−|~wi − ~z(t)|2

b2
i

]
(5)

Here, gi is the activation of the i’th second hidden layer unit and b2
i is its “bias”

(a parameter which controls the radius of the spherical region of Hidden1 space
over which the unit is active); ~wi is the vector of weights feeding from Hidden1
to unit i in Hidden2; ~z is the vector of Hidden1 activations.

The second hidden layer units have first-order connections to the output
units, which, as a group, have the normalized exponential (“soft-max”) activa-
tion function, since they model the probability distribution for the next symbol
at each point in time (oi(t) is the activation of the i’th output at time t):

oi(t) =
exp(neti(t))∑

k∈Outputs

exp(netk(t))
(6)

neti(t) =
∑

j∈Hidden2

wijgj(t) (7)

The network receives symbols in sequence from the language it is trained on.
Each symbol activates a single, unique unit on the input layer. The activations
are updated layer-by-layer in the order, Input, Hidden1, Hidden2, Output. In
the recurrent layer, Hidden1, all the new states are computed before any of the
states are actually changed. The job of the network is to activate on the output
layer, after each symbol is presented, the correct probability distribution over
next-symbols [4]. The (gaussian) radial basis functions at Hidden2 are used by

Table 3: Grammar 2. (See Table 2 for explanation.)

0.5 S → A B
0.5 S → X Y

1.0 A → a (S) 1.0 B → b (S) 1.0 X → x (S) 1.0 Y → y (S)

the network to classify the branches of the fractal on which the network travels
in Hidden1. For the languages considered here, each fractal branch in Hidden1
corresponds to a different immediate future and hence a different probability
distribution on the output layer. The use of radial basis functions rather than
sigmoid functions on Hidden2 helps to drive the formation of the contraction
maps which are important for implementing the fractal scaling: if the FLNN
persists in using non-contractive scaling, then it will suffer great inaccuracy
when multiple embeddings drive it outside the halo of the radial basis units.

3 Simulations

3.1 Training Languages

Matlab script for running simulations like those reported here is available at
http://solab.uconn.edu/People/Tabor/papers.html. I used the training lan-
guages specified by Grammar 1 (Table 2) and Grammar 2 (Table 3). These
languages are exponential state-growth languages. Their state-growth functions
are 2(L

3 +1) − 1 and 2(L
2 +1) − 1, respectively [24].

3.2 Training Procedure

Two constraints were put on the FLNN to make learning easier. The three
gaussian units in the second hidden layer were assigned fixed variances (here
0.25). These units end up classifying the branches of the fractal. Since the radius
of each fractal branch is arbitrary, provided it is positive, the second hidden layer
variances can be fixed without loss of generality. All the hidden self-weights were
set to 1 initially. The self-weights perform the fractal contraction and expansion,
so setting them to the multiplicative identity is the unbiased choice.

The networks were trained by gradient sampling in batch mode. At each
learning time step, a sample of small displacements from the current location in
weight space is sampled, and the one that reduces the error most is chosen. Gra-
dient sampling is simple to implement and conventional methods of computing
the gradient accurately—e.g., Backpropagation Through Time [13, 20, 26, 28, ?]
and Real-time Recurrent Learning [16, 29]—suffer from disappearance of the
error signal across long time lags [8]. A disadvantage of the current gradient

sampling method is that it is inefficient and not obviously biologically moti-
vated. Despite these drawbacks, the method is robustly effective in the case of
the problems considered here.

The gradient sampling was implemented as follows. A corpus of sentences
from the language was processed at the current weight setting and at points on
a sphere in weight-space surrounding the current setting. Only a set of basis
directions and their negatives was tested. Whichever single weight adjustment
produced the greatest reduction in the error relative to the current setting was
adopted and the process was repeated. Error on a particular word was measured
as Kullback-Leibler Divergence at the output layer (E =

∑
i∈Outputs tilog(ti

oi
),

where ti is the probability of word i in the context and oi is the activation of
output unit i) and was summed over all words in the training corpus. The radius
of the sphere was 0.001. The initial values of the Hidden1-to-Hidden2 weights
and the Hidden2-to-Output weights in each network were randomly picked from
the uniform distribution on (-0.3, 0.3).

The training corpus for Language 1 had one instance of each sentence up to
length 9; for language 2, up to length 6—i.e. up to 3 levels of recursion in each
case. From the corpus distribution associated with each language, I computed
the transition probabilities in an infinite training corpus and used these as the
targets on the output layer. The networks were trained until their mean error
per word on the test corpus dropped below 0.001 or the gradient became so
shallow that it appeared flat in single-precision floating point.

3.3 Training Results

Test Statistics

The test corpora consisted of all sentences of length 12 to 15 words from Lan-
guage 1 and all sentences of length 8 to 10 words from Language 2 (i.e., novel
sentences with ≤ 5 levels of recursion).

FLNN1 and FLNN2 processed their training sets completely accurately in
9 and 11 out of 15 trials, respectively. I will refer to the runs with accurate
training set performance in each case as the “successful runs”. No unsuccessful
runs achieved more than 93% accuracy on the training corpus. To detect and
avoid over-learning, the networks were tested on the testing corpus as well as
the training corpus throughout training. This precaution turned out not to be
necessary: the minimum of testing error occurred at, or very near, the end of
training and the difference in performance was slight. All results reported are
from the end of training.

Table 4 shows the Root Mean Squared Error [7] and the percentage of cor-
rectly predicted transitions for the two networks on its training corpus and test
corpus. The very low error rates on the test corpus suggest that each network has
successfully generalized to a language with similar structure to that of the tar-
get. The analysis of the following section reveals that this performance degrades
when deeper levels of embedding are tested, but it also shows that the success-
ful networks have adopted solutions that are structurally analogous to those of

Table 4: Performance on training and test sets for the two FLNN’s. RMSE = Root
Mean Squared Error. % Cor. = Percent Correct. N = the number of networks that
contributed to the computation of Standard Error (SE). Npoints = the number of
words tested per network.

Language Corpus RMSE SE % Cor. SE N Npoints
1 Training 0.013 0.001 100.000 0.000 9 129
1 Test 0.048 0.005 99.424 0.195 9 4755
2 Training 0.008 0.000 100.000 0.000 11 276
2 Test 0.022 0.001 99.900 0.022 11 15232

the corresponding PDDAs. In this sense, they have successfully identified the
intended, infinite-state language.

State Space Analysis

In order to process a language correctly, the network must assign states with dif-
ferent futures to different locations in the recurrent hidden unit space (Hidden1).
Therefore, it is helpful to divide the Hidden1 states into equivalence classes of
states with identical futures under the grammar. Figure 3a provides one view
of such a partition. It was generated from the Hidden1 states of a network that
learned Language 1 successfully. Each labeled point in the figure marks the
mean of the points associated with the stack state that labels it. Figure 3a was
derived from the set of all states the network visited while processing the test
corpus (the Visitation Set of the corpus). The set of vector means over states
with common futures derived from this set will be called the Mean Visitation
Set or MVS.). Figure 3a is analogous to Figure 1a. Indeed, it is clear from
comparison of the figures that the trained network has discovered an analogous
fractal organization to that of the PDDA. The branches of the fractal have been
shaded to distinguish the two different immediate futures that are associated
with all points but the initial point in Language 1. These two immediate futures
are [0.2 a, 0.8 b, 0.0 c] and [0.2 a, 0.0 b, 0.8 c].1 Every other successful network
had an identically structured set of means.

Two important properties distinguish PDDAs from DAs in general: (a) the
regions (or branches) of the fractal that correspond to different immediate future
states are nonoverlapping; (b) symbolic machine cycles correspond to dynamical
machine cycles (See online Appendix 1). Peter Tin̂o (P.C.) refers to constraint
(b) as the Generalized Fixed Point Condition (GFPC). It says, in essence, that in
situations where a PDA makes a loop in its state space, the corresponding PDDA
will too. To understand the process by which a FLNN develops its solution, it
is helpful to examine properties (a) and (b) separately.

1In [0.2 a, 0.8 b, 0.0 c], the decimal numbers indicate probabilities and the letters identify
next-symbols.

a.
−2 −1.5 −1 −0.5 0 0.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A

AA

AAA BAA

BA

ABA BBA

B

AB

AAB BAB

BB

ABB BBB

z1

z2

b.
−3 −2 −1 0 1

−0.5

0

0.5

1

1.5

z1

z2

c.
−3 −2 −1 0 1

−0.5

0

0.5

1

1.5

z1

z2

d.
−3 −2 −1 0 1

−0.5

0

0.5

1

1.5

z1

z2

Figure 3: a. State means for a sample FLNN at the end of training. b-d. Evolution
of state means during training. The MVS is shown at 10000 steps along the gradient
(b), 13500 steps (c) and 25000 steps (d).

a. Overlap of Branches. Figure 3b-d tracks the overlap of fractal branches
during the course of training for the same successful network depicted in Figure
3a. In this figure, the stack state labels have been removed to make viewing
easier. Figure 3b-d depicts the MVS associated with a test set of all palindromes
up to 5 levels of embedding. At the beginning of training, the MVS is a single
point because all of the Input-to-Hidden1 weights are initialized to 0. After
training has proceeded for a while, the MVS has expanded into an infinite lattice
with high overlap between the branches (Figure 3b). This infinite-lattice is the
reflection of the unit initial weights in Hidden1, which imply no contraction or
expansion. Over the course of training, the branches shrink to a finite size and
gradually spread apart (Figure 3c), eventually reaching a nonoverlapping final
state (Figure 3d, which shows the same points as Figure 3a). The fact that once
the fractal branches come into existence, they monotonically shrink and separate
is an indication that the dynamics of the learning process are dominated by an
attractor with the topological properties of the PDDA 1 solution.

b. Generalized Fixed Point Condition (GFPC). Figure 4 shows the distri-
bution of points associated with each common future at the end of training.
Figure 4a was based on points from the Training Corpus alone (up to 3 levels

a.
−2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1.5

z 0

a
b

z1

z2

b.
−2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1.5

z 0

a
b

z1

z2

Figure 4: Visited points grouped by source state for (a) 3 levels of recursion (training)
and (b) 5 levels (test). The data are from the same run as in Figure 3. Contours show
the induced classification surface.

of recursion). In addition to showing the means of points with identical futures
at the apices of downward pointing triangles, each set of points with a common
future has a polygonal simplex drawn around its periphery. Because the train-
ing set was learned with high accuracy, these polygons appear as single points
coincident with their means for most levels of recursion. Only the points as-
sociated with the 0’th level are visibly separated, and surrounded in the figure
by a small triangular simplex. The contours indicate the network’s interpre-
tation of the error surface at the end of training. This surface was arrived at
by computing the Hidden1-to-Output map for each point, ~z within the plotted
region of Hidden1. For each resulting point in Output space, its distance to the
three grammar-derived distributions was computed. The height of the induced
error surface at ~z was taken to be the minimum of these three distances. Thus
the basin structure of Figure 4a indicates how the network classifies points in
its Hidden1 space. Indeed, each training point lies well within the basin of the
correct probability distribution, in keeping with the fact that the network made
no classification errors on the training corpus at the end of training. However,
the positive area of the triangles (visible at the 0’th level in the figure) indicates
that the network is not perfectly obeying the GFPC: it does not always return
to exactly the same point after processing a sequence of symbols that would
return the corresponding PDA to the same stack-state.

Figure 4b displays the consequence of this failure in the case of process-
ing more deeply embedded strings. It is identical to Figure 4a except that the
Visitation Set on which it is based included the palindromes from each level
of recursion up to the maximum level contained in the test corpus (5 levels).
Displacements (with respect to the GFPC) at high levels of recursion grow ex-
ponentially as the network state scales back up to the 0 level. Thus the set of
points that are supposed to coincide with the initial state shows the highest level
of distortion. Indeed, some of the initial points and some of the b-predictions
land in the wrong basin. Such basin transgressions are the source of the errors

on the test corpora. Although this distortion implies that the network will make
many errors on sentences with very deep embeddings, the fact that the network
completely separates the branches of the fractal indicates that it has successfully
captured the structure of the PDDA solution.

4 Conclusions

Fractal Learning Neural networks appear to be able to reliably discover, via
gradient descent exploration, the information structure of a time series generated
by several exponential state-growth context free languages. These networks thus
show promise of helping to understand, in a principled way, neural learning of
complex recursive processes.

Several prior studies have shown that SRNs can approximate natural-
language-like recursive patterns [5, 19]. The utility of these findings for re-
searchers of language phenomena will be limited in the long run if we cannot
relate them to the structural understanding provided by symbolic analyses. A
valuable aspect of the preceding analysis is that it reveals the principle behind
the network’s solution to the learning problem and clarifies the relationship be-
tween network recursion approximation and symbolic perfect recursion.

Several avenues of future work look promising. It may be helpful to pursue a
more efficient and accurate method of computing the error gradient—e.g., LSTM
[6, 9]. A topic of current work is to improve FLNN generalization accuracy in
cases of deep embedding by using the information in the gradient to drive a more
perfect approximation of the GFPC. It will also be helpful to consider a wider
range of languages than the ones reported on here, including languages that
require using a stack with more than two symbols, non-context-free languages,
and languages for which a PDA with independent control states is needed, lan-
guages with lexical ambiguity (the same word causes different manipulations of
the stack, depending on context), and languages with structural ambiguity (the
stack state is not uniquely determined by the input).

Much research on neural network learning focuses on the micro-level of the
learning mechanism; less has focused on the macro-level of the representations
that are to be learned. Indeed, these representations are often inscrutable in
nets trained on complex problems. The present results suggest that it is both
possible and valuable to study representations in order to guide the search for
an effective learning mechanism in complex domains.

Bibliography

[1] Barnsley, Michael, Fractals Everywhere, Academic Press Boston (1988).

[2] Bodén, Mikael, and Janet Wiles, “On learning context-free and context-
sensitive languages”, IEEE Transactions on Neural Networks 13, 2 (2002),
491–493.

[3] Chomsky, Noam, “Three models for the description of language”, IRE
Transactions on Information Theory 2, 3 (1956), 113–124, A corrected
version appears in Luce, Bush, and Galanter, eds., 1965 Readings in Math-
ematical Psychology, Vol. 2.

[4] Elman, Jeffrey L., “Finding structure in time”, Cognitive Science 14
(1990), 179–211.

[5] Elman, Jeffrey L., “Distributed representations, simple recurrent networks,
and grammatical structure”, Machine Learning 7 (1991), 195–225.

[6] Gers, Felix A., and Jurgen Schmidhuber, “LSTM recurrent networks
learn simple context-free and context-sensitive languages”, IEEE Transac-
tions on Neural Networks 12, 6 (2001), 1333–1340.

[7] Haykin, Simon S., Neural networks: a comprehensive foundation, MacMil-
lan New York (1994).

[8] Hochreiter, Sepp, “The vanishing gradient problem during learning re-
current neural nets and problem solutions”, International Journal of Un-
certainty, Fuzziness, and Knowledge-Based Systems 6, 2 (1997), 107–116.

[9] Hochreiter, Sepp, and Jürgen Schmidhuber, “Long short-term mem-
ory”, Neural Computation 9, 8 (1997), 1735–1780.

[10] Holldobler, Steffen, Yvonne Kalinke, and Helko Lehmann, “Design-
ing a counter: Another case study of dynamics and activation landscapes in
recurrent networks”, Advances in Artificial Intellegence. Springer, C 1997
Berlin; New York (1997), pp. 313–324.

[11] Hopcroft, John E., and Jeffrey D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley Menlo Park, Cali-
fornia (1979).

[12] Moore, Cris, “Dynamical recognizers: Real-time language recognition by
analog computers”, Theoretical Computer Science 201 (1998), 99–136.

[13] Pearlmutter, Barak A., “Gradient calculations for dynamic recurrent
neural networks: A survey”, IEEE Transactions on Neural Networks 6, 5
(1995), 1212–1228.

[14] Pollack, Jordan, “On connectionist models of natural language process-
ing”, Unpublished doctoral dissertation, University of Illinois. (1987).

[15] Pollack, Jordan B., “The induction of dynamical recognizers”, Machine
Learning 7 (1991), 227–252.

[16] Robinson, A. J., and F. Fallside, “The utility driven dynmaic error prop-
agation network”, Technical Report CUED/F-INFENG/TR.1, Cambridge
Univ. Engineering Department (1987).

[17] Rodriguez, Paul, “Simple recurrent networks learn context-free and
context-sensitive languages by counting”, Neural Computation 13, 9 (2001).

[18] Rodriguez, Paul, and Janet Wiles, “Recurrent neural networks can learn
to implement symbol-sensitive counting”, Advances in Neural Information
Processing Systems 10, (M. Jordan, M. Kearns, and S. Solla eds.).
MIT Press Cambridge, MA (1998), pp. 87–93.

[19] Rohde, Douglas, and David Plaut, “Language acquisition in the absence
of explicit negative evidence: How important is starting small?”, Journal
of Memory and Language 72 (1999), 67–109.

[20] Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams, “Learn-
ing internal represenations by error propagation”, Parallel Distributed Pro-
cessing, v. 1, (D. E. Rumelhart, J. L. McClelland, and the PDP
Research Group eds.). MIT Press (1986), pp. 318–362.

[21] Siegelmann, Hava, “The simple dynamics of super Turing theories”, The-
oretical Computer Science 168 (1996), 461–472.

[22] Sun, G. Z., H. H. Chen, C. L. Giles, Y. C. Lee, and D. Chen, “Connec-
tionist pushdown automata that learn context-free grammars”, Proceedings
of the International Joint Conference on Neural Networks, (M. Caudill
ed.). Lawrence Earlbaum Hillsdale, NJ (1990), pp. 577–580.

[23] Tabor, Whitney, “Fractal encoding of context-free grammars in connec-
tionist networks”, Expert Systems: The International Journal of Knowledge
Engineering and Neural Networks 17, 1 (2000), 41–56.

[24] Tabor, Whitney, “Learning exponential state growth languages by hill
climbing”, IEEE Transactions on Neural Networks 14, 2 (2003), 444–446.

[25] Tiňo, Peter, “Spatial representation of symbolic sequences through itera-
tive function systems”, IEEE Transactions on Systems, Man, and Cyber-
netics Part A: Systems and Humans 29, 4 (1999), 386–392.

[26] Werbos, Paul J., “Generalization of backpropagation with application to
a recurrent gas market model”, Neural Networks 1, 4 (1988), 339–356.

[27] Wiles, Janet, and Jeff Elman, “Landscapes in recurrent networks”, Pro-
ceedings of the 17th Annual Cognitive Science Conference, (J. D. Moore
and J. F. Lehman eds.). Lawrence Erlbaum Associates (1995).

[28] Williams, R. J., and J. Peng, “An efficient gradient-based algorithm for
on-line training of recurrent network trajectories”, Neural Computation 2
(1990), 490–501.

[29] Williams, Ronald J., and David Zipser, “Gradient-based learning algo-
rithms for recurrent networks”, Backpropagation: Theory, Architectures,
and Applications, (Y. Chauvin and D. E. Rumelhart eds.). Lawrence
Erlbaum Associates (1995), pp. 433–486.

