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Abstract

We examine two connectionist networks—a fractal learning neural network (FLNN) and a Sim-

ple Recurrent Network (SRN)—that are trained to process center-embedded symbol sequences.

Previous work provides evidence that connectionist networks trained on infinite-state languages

tend to form fractal encodings. Most such work focuses on simple counting recursion cases (e.g.,

anbn), which are not comparable to the complex recursive patterns seen in natural language syn-

tax. Here, we consider exponential state growth cases (including mirror recursion), describe a new

training scheme that seems to facilitate learning, and note that the connectionist learning of these

cases has a continuous metamorphosis property that looks very different from what is achievable

with symbolic encodings. We identify a property—ragged progressive generalization—which

helps make this difference clearer. We suggest two conclusions. First, the fractal analysis of these

more complex learning cases reveals the possibility of comparing connectionist networks and sym-

bolic models of grammatical structure in a principled way—this helps remove the black box char-

acter of connectionist networks and indicates how the theory they support is different from

symbolic approaches. Second, the findings indicate the value of future, linked mathematical and

empirical work on these models—something that is more possible now than it was 10 years ago.

Keywords: Dynamical systems; Recursion; Symbolic models; Neural (connectionist) networks;

Fractal grammars; Simple Recurrent Network (SRN); Generalization; Self-organization

1. Introduction

Various data from language acquisition and historical linguistics suggest that languages

change gradually. By a language, we mean the verbal behavior of one speaker or a

community of speakers and we focus on the formal, patterned nature of such behavior. In
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language acquisition, the appearance of syntactic construction types is ordered in a way

that suggests incremental progression and new constructions show gradual adjustment of

frequencies (e.g., O’Grady, 1997; Wells, 1985); in historical language change, grammati-

cal changes appear to progress by stages through “nearby” construction types, and gram-

matical changes are again accompanied by relatively smooth frequency changes

(Andersen, 1987; Craig, 1991; Elleg�ard, 1953; Fontana, 1993; Kroch, 1989a; Tabor,

1994).

Traditional grammatical models are symbolic rule systems: They consist of a finite set

of rules over a finite alphabet of symbols that generate a (usually countably infinite) set

of linguistic structures. There does not seem to be a sensible way of understanding an

individual case of such a system as undergoing gradual change of its structure. How,

then, are the empirical data in support of gradual acquisition and change to be accommo-

dated?

There are at least three plausible approaches:

[1] At any point in time, each person has a single, symbolic grammar, but at certain,

isolated points in each person’s life, the person’s grammar is replaced by a structurally

different one. In a speech community, different people will switch grammars at differ-

ent times (we assume the switching times are continuously distributed). In this

case, averaging over people at a single time gives the impression of intermediate

probabilistic behavior, and tracing behavior over time reveals gradual change in these

probabilities.

[2a] An individual person stores multiple symbolic grammars and chooses probabilisti-

cally among them each time a linguistic decision is made. This approach has been

explored in historical language change (Kroch, 1989a, b).

[2b] An individual has a symbolic grammar with probabilistic productions (e.g., a

probabilistic context-free grammar). This approach is the standard Variationist concep-

tion (Labov, 1972) and is also commonly used in computational linguistics. If the

probabilities of the grammar rules change continuously, then the behavior changes con-

tinuously.

[3] Connectionist models. These are networks of interconnected units whose input acti-

vations stem from environmental stimuli and whose output activations spur actions or

specify probabilities of actions. The parameters of the models are (typically) real-val-

ued weights on the connections between units, and the functions that define the interac-

tions between units are (typically) continuous. Thus, continuous change in the

parameters produces continuous change in the behaviors. Many studies have modeled

language acquisition processes using such connectionist networks (e.g., Elman, 1993;

Plunkett & Marchman, 1991; Rohde & Plaut, 1999; Rumelhart & McClelland, 1986).

A few have considered historical language change (e.g., Hare & Elman, 1995; Tabor,

1994, 1995).
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We think approach [3] has particular promise. We also think it is fundamentally differ-

ent from approaches [1] and [2]. But it is difficult to assess the empirical validity of

approach [3] because many connectionist models are understood via simulation, not via

principle (exceptions are the work of Haken—e.g., Haken, 2004—and Smolensky—e.g.,

Smolensky, 1999), so it is hard to understand what they are claiming in general about

data. It is also difficult to tell whether approach [3] does, in fact, make formally or empir-

ically distinct claims from the other two approaches because approaches [1] and [2], on

the one hand, and [3], on the other, are typically specified at different levels of descrip-

tion. Under approaches [1] and [2], models are specified via symbolic rules. Under

approach [3], models are typically fully described only at a lower, “sub-symbolic” level

(Smolensky, 1988). If we described them at the same level of description as approaches [1]

and [2], we might discover that they employ the same abstract computational mechanisms

as [1] and [2] or we might discover that they do something different.

To this end, we employ tools of dynamical systems theory. A dynamical system is a

system that changes. Dynamical systems theory studies functions from state spaces to

themselves—typically differential equations or iterated maps, where both the parameter

spaces of the functions and the state spaces themselves are connected.1 Here, we focus

on iterated function systems (Barnsley, [1988]1993): These are iterated maps with multi-

ple maps on the same state space. We are interested in cases where the maps are continu-

ous. Discrete update, environmentally driven recurrent connectionist networks (e.g., the

Simple Recurrent Network (“SRN”) of Elman, 1990, 1991) employ such continuous map

iterated function systems. The connectedness of the parameter space and the state space

are of particular interest. We define the behavior of a dynamical system through time in

an environment as the map from occurring states of the environment 9 state space to

successor states of the state space under the dynamics (the environment in this context is

a sequence of words). The system can thus travel (or be concentrated) in a subset of the

state space and that subset can have a particular form. We are interested in the possibility

that arbitrarily small changes in the parameters of the system can give rise to arbitrarily

small changes in the state and thus in the form. Viewing the system as a model of lan-

guage learning or language change, we specify that the parameters change continuously.

Because of the connectedness of the parameter space and the continuity of the maps, this

assumption puts a strong constraint on change in the form: It must also change continu-

ously (given a particular environment). The state space of the dynamical model is then

continuously mapped to a space of probabilities over behaviors. In this way, the continu-

ity of the parameter space can be mirrored in continuity of behavior, which can be

observed. Emphasizing the foundation of this continuity, we refer to these models as

“connected space computers.”

Is this different from symbolic computing? Consider, for comparison, the set of all

Turing Machines as a model of a (changing) language. A particular historical state of a

language or a particular state of the development of an individual corresponds to a particu-

lar Turing Machine with an initial state of its tape. Changing the language or the learner’s

grammatical system is modeled as replacing the current machine + initial state with a

different one. Thus, the parameter space is the space of all possible finite state controllers
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9 initial tape states. This is a countable set so it is not connected under the natural, dis-

crete topology.2 The set of processing states possible under the union of all Turing

Machines is a countable union of countable infinities and is thus also countable. Therefore,

this space too is not naturally connected. Lack of connectedness in the parameter space

precludes the possibility of modeling change of behavior as continuous parameter change.

Lack of connectedness in the union of state spaces precludes the possibility of continuous

change of the state or “form” in the sense referred to above. For these reasons, Turing

Machine models (including restricted classes like the set of context-free grammars) do not

make the same predictions as connectionist models.

One might think that introducing probabilistic rules in the symbolic domain would

change this situation because probabilities, unlike grammars, lie in a connected space.

The map from the state of a connected space computer (e.g., the hidden space of the

SRN) to a set of probabilities over successor events (e.g., the hidden to output map of the

SRN) is analogous. However, introducing probabilistic rules in the symbolic model does

not affect the map from the parameter space to the state space under a specified symbol

sequence. In particular, it does not change the fact that the rule parameter space and the

state space (set of machine configurations visited under the rules) are countable, so it

does not make the models capable of making continuity-based predictions of the sort

described above. What it does add is a prediction about the statistical distribution of sym-

bol sequences in the environment, and this may be employed to make predictions about

the way grammars change in language history and development without employing con-

nected grammar or state spaces.

One might also note that a Turing Machine can approximate any function arbitrarily

closely. In fact, when we run connectionist models on digital computers, we are making

use of such approximations. Does this not imply that a Turing Machine model can come

arbitrarily close to a connectionist model and is thus not empirically distinguishable from

it in any way that we should care about empirically? It is possible, but there are some

challenges that need to be addressed for this approach to work. We return to this point in

the Conclusions.

We focus on a case that highlights the distinction between the two approaches: recur-

sion learning. Under traditional, symbolic formulations, recursion involves precise coordi-

nation among multiple symbolic rules. Since the symbolic rules themselves cannot morph

continuously, and all the rules have to be in place for the recursion to work, it is hard to

envision how a recursive system could gradually take form. A helpful idea provided by

dynamical systems theory is that recursive computation can take place in connected space

computers using fractals (Moore, 1998; Rodriguez, Wiles, & Elman, 1999; Rodriguez,

2001; Siegelmann, 1999; Tabor, 2000; Wiles & Elman, 1995). Fractals are sets that are

self-similar (or nearly self-similar) at arbitrarily small scales (Barnsley, [1988]1993). A

fractal is a kind of recursive spatial object. A key insight offered by these studies is that

one can use the spatial recursion of fractals to keep track of the temporal recursion of

complex symbol sequences. It is easier to understand how fractals can come into being

gradually than it is to understand how rule systems can come into being gradually. Thus,
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the fractal models offer a way of predicting some of the gradual change phenomena men-

tioned above.

Pollack (1987, 1991) anticipated the major insights: connectionist networks can learn

to process recursive structure, they do it using iterated function systems, traveling on

fractals (a la Barnsley, [1988]1993), they go through phase transitions on the way to

achieving complex memory structure (e.g., stack memory). Servan-Schreiber, Cleeremans,

and McClelland (1991) anticipate our discussion of continuous structural metamorphosis
with their notion of a graded state machine—we make the concept more precise by

studying the formation of the fractals.

A number of computational results from the 1990s and early 2000s provide helpful

background. Connectionist networks not only do Turing computation but they also do

super-Turing computation (e.g., Moore, 1998; Siegelmann, 1999), the models can fairly

easily learn finite samples from anbn (a counting recursion/linear state growth language)3

and generalize to higher levels (Blair & Pollack, 1997; Wiles & Elman, 1995), some can

do counting recursion with context-sensitive languages (Bod�en & Wiles, 2002; Bod�en &

Blair, 2003; Chalup & Blair, 2003; Rodriguez, 2001); they do this by traveling on fractal

sets, as predicted (Rodriguez, 2001)—see Kolen and Kremer (2001) for review.

This work is helpful, but it has largely subsided and its relevance to central problems

in cognitive science has not been recognized. We see three probable reasons for this: (1)

counting recursion is not very natural language-like (Corballis, 2007), and training was

not very successful with mirror recursion and other exponential state growth languages

(Rodriguez, 2001); (2) the learning work is not very mathematical, so it is hard to see

how what it is claiming precisely and in general; (3) all of this work is not human empir-

ical so there is a lack of evidence that it bears on problems in human cognition.

Our previous work (Tabor, 2003, 2011) helps with (1) by introducing the fractal learn-

ing neural network (FLNN), a connectionist model that can implement exponential state

growth languages exactly and can learn to approximate them with high accuracy. The

most significant feature of this work is that it gives us a glimpse of a connectionist net-

work learning a symbol sequencing problem with complexity much closer to that of natu-

ral language than the previous cases. We present the network in comparison to alternative

ways (1 and 2 above) of modeling gradual structure change within the symbolic paradigm

and find evidence that the network is doing something different. We hope our results will

spur future research of two kinds: one, mathematical investigation of the nature of the

computational change that occurs during the continuous metamorphosis; the other, empiri-

cal investigation of the correspondence between the theory and human behavior. In the

past 25 years, there have been significant developments in our understanding of computa-

tion on the reals and other connected spaces (e.g., Blum, Shub, & Smale, 1989; Blum,

Cucker, Shub, & Smale, 1998; Calvert, 2011; Moore, 1996, 1998) and in our understand-

ing of the computational properties of real numbers (e.g., Downey & Hirschfeldt, 2010;

Nies, 2009) that may make the mathematical development more feasible. Likewise, there

have been significant developments in our ability to study the fine-grained properties of

human language perception and learning (e.g., Altmann & Kamide, 1999; Cho, Szudlarek,

Kukona, & Tabor, 2011; Magnuson, Tanenhaus, Aslin, & Dahan, 2003; Misyak,
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Christiansen, & Tomblin, 2010; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995)

that make that make the experimental development more feasible.

Our purpose in this article is to review two connectionist models of recursion learning

and to demonstrate the gradual formation of fractal structure in both of them. The first

type is the FLNN. These systems afford mathematical analysis of a relatively simple sort

and thus help make the ideas perspicuous. On the other hand, it is not clear how general

FLNNs are—they have not yet been shown to work in all the kinds of cases that seem

relevant for natural language. The second type we investigate is the SRN (Elman, 1990).

This model has been successfully trained on a much wider variety of distributions than

the FLNN and has been widely studied as a model of psychological phenomena. We

present evidence that an SRN trained on a recursive language uses fractal organizational

principles, somewhat like, though not exactly like, the FLNN—this analysis extends pre-

vious results on fractal organization in connectionist networks (e.g., Pollack, 1991; Rodri-

guez, 2001; Tabor, 2000, 2003) by offering precise methods of measuring the degree of

fractal organization in high dimensional state spaces.

1.1. Formal devices

Two devices from classical computing are particularly relevant: a finite state machine
(FSM) is a computer that can only be in a finite number of distinct states; a pushdown
automaton (PDA) is a finite state machine combined with a pushdown stack—that is, an

unbounded, first-in, last-out symbol string memory. The last symbol added to the stack is

called the top of stack. The states of the finite state part of the PDA are sometimes called

control states. The rules of processing of a PDA specify how the stack and the control

states change given the current input, the current top of stack, and the current control

state. A formal language is a set of finite-length strings drawn from a finite alphabet. We

say that a machine recognizes a formal language, L, if, for any finite length string, it can

decide, in a finite number of steps, whether the string belongs to L. From the definitions

just given, it is clear that every FSM language is a PDA language. But there are infinite-

state PDA languages—they require the PDA to employ stack states of arbitrary length—
and these cannot be recognized by any FSM (Hopcroft & Ullman, 1979).

Several properties of standard connectionist networks are also relevant: typically, con-

nectionist networks are organized into successive layers of units. The first layer detects

the input and sends the signal to a “higher” layer, which may interact with itself for a

time (recurrent connections), and then send the signal to an even higher layer, etc. The

units in these layers are typically simple neural detectors with information processing

characteristics related to types of neurons that have been observed in the brain: One com-

mon type is a sigmoidal or threshold unit—these units have the property of linearly sepa-

rating the activations of the layer below into two halves: if the activation pattern on the

lower layer is on one side of a hyperplane that divides the space, the sigmoid/threshold

unit turns off; if the pattern on the lower layer is on the other side of the hyperplane, the

sigmoid/threshold unit turns on (Minsky & Papert, 1988[1969]). Another common type,

also evidenced in the brain, is an on-center-off-surround or radial basis function unit.
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These units turn on when the pattern on the lower layer is in a particular spherical (or

elliptical) region of the lower space, and they turn off otherwise.

1.2. Overview

The remainder of the article is organized as follows. Section 2 considers an example

of a PDA language that is not an FSM language, defines “fractal grammars,” and shows

how a fractal grammar keeps track of the infinite structure in the example language.

Section 3 describes the FLNN—a network that can learn the language of a fractal

grammar—and shows the result of training it on the language of Section 2. Section 4

considers a slightly different PDA language that has not been successfully learned by an

FLNN but is more suitable for training people. An SRN is trained on sample sentences

from this language and assessed to see whether it shows similar representational and

learning characteristics to the FLNN. Section 5 concludes.

2. Fractal learning neural networks

2.1. Dynamical automata

To formalize connected space computing, Tabor (2000) defines dynamical automata

(see the similar formalism of Moore, 1998). The essential idea is that there is a complete

metric space with a set of functions that map parts of the space to other parts of the

space.4 Each function is associated with some symbols from a finite alphabet that license

it. Thus, if the system starts in the domain of one of the functions, and receives one of

the symbols that license the function, then it can apply the function, bringing it to a new

part of the space, where a different range of function applications and possible symbols

may be available. We can define a particular subset of the space as the Final Region.
When the system reaches the Final Region, we consider the sequence of symbols it has

processed since it was at the initial state, a sentence. The set of sentences that the autom-

aton recognizes from a given initial state is the language of that automaton-state pair.

Similarly, we can start the system in some initial state and let it generate sequences of

symbols by selecting among the legal options at any point. As in classical computing, the

set of generated sentences is the set of recognized sentences, and we will henceforth refer

to this set as the sentences “processed” by the dynamical automaton. Thus, a dynamical

automaton, in combination with a particular initial state, specifies a language of strings as

in classical computational theory (Hopcroft & Ullman, 1979). In fact, the framework is

identical to that of the classical theory with the sole difference that the space is a

connected (uncountable) space rather than a countable set. This difference changes the

kinds of languages that can occur (Moore, 1998; Siegelmann, 1999; Tabor, 2009).5 It also

draws attention to the metric relations among the states, and these turn out to be

revealing.
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More formally, Tabor (2000) defines a Dynamical Automaton, DA, by

DA ¼ ðH;F;P;R; IM; x0;FRÞ ð1Þ

H is a complete metric space (Barnsley, [1988]1993; Bryant, 1985). F is a finite list of

functions fi : H ! H, P is a partition of the metric space, Σ is a finite symbol alphabet,

IM is an Input Map—that is, a function from symbols in Σ and compartments in P to

functions in F. The input to the dynamical automaton is a string of symbols. The machine

starts at x0 and invokes functions corresponding to the symbols in the input in the order

in which they occur, if it is possible to do so under the constraints of the input map. If

every symbol presentation conforms to the Input Map and, when the last symbol has been

presented, the system is in the region FR⊆H, then the DA accepts the string. As men-

tioned above, dynamical automata can process many types of languages. Tabor (2000)

shows how to implement any context-free language in a dynamical automaton.

2.2. A sample fractal grammar

Some dynamical automata navigate on fractal sets. In this case, they may be called

fractal grammars. Tabor (2003) considers the language L1, identified in Table 1. L1 is a

probabilistic context-free language the sentences of which cannot be processed by a finite

state machine.6 This language has a particularly simple PDA implementation: Even with

every input symbol evoking a single stack event (push or pop in this case), no control

state changes are necessary; the PDA can do all of its symbol processing by referring to

the top of stack. Table 2 specifies PDA1, a PDA for L1.

Table 3 shows a dynamical automaton encoding of L1. To see how this encoding

works, it is useful to compare DA1 to PDA1. Under PDA1, there is a distinct stack state

for every grammatical sequence of a’s, x’s, b’s, and y’s that has a distinct future—that is,

for every causal state in the sense of Crutcheld (1994).7 In the notation of Table 2, the

set of all stack states is {A, X, AA, AX, XA, XX, AAA, AAX, AXA,. . .}. Fig. 1A shows

a way of organizing these states in a metric space by mapping them to a fractal. DA1 is

designed to make use of these stack states to keep track of recursive dependencies in Lan-

guage L1. The dynamical automaton always starts at 0
0

� �
. It stores the history of its current

Table 1

PCFG1, a probabilistic context-free grammar that specifies Language L1. This language is closely related to

the language S ? a (S) b, S ? x (S) y, a palindrome language. It differs in allowing recursive embedding

after any symbol, not just a phrase-initial symbol. Optional constituents (indicated by parentheses) occur with

probability 0.2

0.5 S ? A B

0.5 S ? X Y

1.0 A ? a (S)

1.0 B ? b (S)

1.0 X ? x (S)

1.0 Y ? y (S)
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Table 2

PDA1, a pushdown automaton for L1. For each row of the table, the “Input Symbol" value shows the allow-

able language symbol that can occur next when the top of the stack has the value in “Top of Stack.” The

“Stack Action” value specifies what change occurs to the stack when the symbol is observed/generated. “Push

i” means “add the symbol i to the top of the stack.” “Pop” means remove the top of stack. “R! i” means

“replace the symbol R with the symbol i.” The “Probability” value shows the probability of the specified

action given the top of stack. When the Stack Action is “End,” the current symbol sequence is deemed a

complete sentence. Initialized with the stack consisting of just the symbol R, PDA1 generates the same

(dendogram) language as PCFG1

Probability Top of Stack Input Symbol Stack Action

0.5 R a R!A

0.5 R x R!X

0.1 ∅, A, X a Push A

0.1 ∅, A, X x Push X

0.8 A b Pop

0.8 X y Pop

0.8 ∅ None End

Table 3

The Input Map for DA1. The initial state is 0
0

� �
. For each row of the table, if the system lands in the region

indicated under Compartment, then the symbol(s) indicated under Symbol may be processed via application

of the state change specified under function

Compartment Input State change

Any a z~ 1
2
z~þ �1

�1
� �

Any x z~ 1
2
z~þ �1

1

� �
z1\0 and z2 \ 0 b z~ 2ðz~þ 1

1

� �Þ
z1\0 and z2 [ 0 y z~ 2ðz~þ 1

� 1

� �Þ

−2 −1.5 −1 −0.5 0
−2

−1

0

1

2

z
1

z 2

A

X

AA

XA

AX

XX

AAA

XAA

AXA

XXA

AAX

XAX

AXX

XXX

−2 −1.5 −1 −0.5 0
−2

−1

0

1

2

z
1

z 2

1. a

2. x

3. y

4. a

5. x

6. y

7. b

8. b

(A) (B)

Fig. 1. (A) The correspondence between DA1 states and stack states. Stack states (labeled) are associated

with the apices of rightward-pointing triangles. Each letter in a label identifies a symbol on the stack. The

top of the stack is the right-most letter in each label. (B) The trajectory associated with the sentence, “a x y

a x y b b,” from Language 1. “1” identifies the first word, “2” the second, etc.
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state in a vector. When the pushdown automaton would perform a push operation (i.e., on

observing a or x in the example language), the dynamical automaton shrinks its current

state by a factor of 2 and adds the result to a “base vector” corresponding to the new

symbol. The base vector for a is 0
� 1

� �
. The base vector for x is 0

1

� �
. We can also think of

the origin ( 0
0

� �
) as a base vector corresponding to empty stack. When the pushdown

automaton would perform a pop (observing b or y) in the current system, the dynamical

automaton subtracts the current base vector and doubles the result. This restores the sys-

tem to the state it was in before the last push. Fig. 1B shows the sequence of states visited

by the dynamical automaton when it processes a sample center-embedded sentence. Under

this scheme, the nearest base vector to the current state is a consistent indicator of top of

stack (A, X, or empty). The point of the scheme is as follows: in the next section, we will

describe a connectionist network whose first-hidden-layer state travels on a fractal of this

sort. The next higher layer of this network will have the job of determining which stack

state the system is currently in. Because we have organized the hidden space so that all the

processing states that have the same top of stack are located in the same corner, or on the

same side, of the space, it is a simple matter for the next layer of the network to detect the

current top of stack using sigmoidal (linear separator) or radial basis function (spherical

separator) units. In this language, if the network can accurately determine the top of stack,

then it can accurately predict the future of any grammatical sequence.

It is useful to consider the set visited by the dynamical automaton if it is started in its

initial state and driven by the output of the dendogram language L1. This set is precisely

the fractal. In general, following Tabor, Juliano, and Tanenhaus (1997), we call a set gen-

erated in this fashion the visitation set of the device: It may or may not be a fractal

(Tabor, 2009). In practice, we will often examine finite samples of the model’s visited set

to probe the structure of its system. Where it does not cause confusion, we will also refer

to these finite samples as visitation sets.
The proofs of formal equivalence between context-free grammars and relevant sub-

classes of dynamical automata in Moore (1998), Siegelmann and Sontag (1991), and

Tabor (2000) are constructive proofs, and they all use fractal grammars. Thus, this for-

malism is quite usable for implementing grammars of the sort commonly used in formal

studies of online parsing, language learning, and language change.

2.3. Architecture and activation dynamics of the fractal learning neural network

The previous section defined some formal mechanisms that support the processing of

context-free languages with neural devices. Tabor (2000) shows how one can hand wire a

full, layered implementation. Here, we are particularly interested in learning, so we turn

to the FLNN (Tabor, 2003), a type of layered network that can learn some relatively

complex recursive languages and whose resulting encodings are particularly amenable to

analysis. We illustrate the behavior of an FLNN by training it on data from language L1.

One form of the FLNN architecture is shown in Fig. 2 (from Tabor, 2011). The input

layer receives successive indexical bit vectors (one unit activated at 1, the rest 0) specify-

ing symbols, as indicated by the labels below the input units. The first hidden layer has a
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linear (identity) activation function. All maps are discrete. The following is a general

form of the update rule for linear hidden units:

ziðtÞ ¼
X

j2Inputs
wijajðtÞ þ

X
k2Hidden1

X
j2Inputs

sikjzkðt � 1ÞajðtÞ ð2Þ

Here, t indexes time, aj is the activation of the j’th input unit, and zi is the activation

of the i’th first hidden layer unit; wij is the (first-order) weight on the connection from

unit j to unit i; sikj is the (second order) weight from input unit j and the previous state of

hidden unit k to the current state of hidden unit i. Tabor (2000) shows that only the self-

weights need to be manipulated to implement any context-free grammar and it suffices to

use the same contraction/expansion factor across all hidden dimensions for a given word,

one can set all the non-self-connections in Hidden1 to 0 and define sj ¼ siij. Moreover,

because the input vectors are indexical bit vectors, the description can be further simpli-

fied by defining ziðt; jÞ to be the value of ziðtÞ when unit j is the activated input:

ziðt; jÞ ¼ wij þ ziðt � 1Þsj ð3Þ

In Eq. 3, sj implements the fractal scaling (pushing and popping), and wij specifies the

i’th element of the “base vector” for input j (compare Table 3).

The Linear units have first-order connections to the second hidden layer, which has

(Gaussian) radial basis function units:

giðtÞ ¼ exp � jw~i � z~ðtÞj2
b2i

" #
ð4Þ

Here, gi is the activation of the i’th second hidden layer unit and b2i is its “bias” (a

parameter that controls the radius of the region of Hidden1 space over which the unit is

Input
a b x y

Hidden 1 (Linear)

Hidden 2 (Gaussian)

Output (Softmax)
a b x y

Fig. 2. An FLNN architecture suitable for learning language L1.
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active); w~i is the vector of weights feeding from the Linear Units to unit i of the Guas-

sian units; z~ is the vector of Linear Unit activations; |…| is the Euclidean norm.

As noted above, a system for identifying stack states on the basis of a fractal like that

shown in Fig. 1A must be able to distinguish the two branches of the fractal from one

another and from the apex of the fractal. In the FLNN, the Gaussian units serve this pur-

pose—each will evolve during the learning process so that it is centered on the appropri-

ate part of the fractal. In principle, the same end could be accomplished using only the

output sigmoidal units, and indeed, the SRN described in the next section appears to

accomplish something like this, but in experimenting with the FLNN, we were able to

achieve successful learning only when a layer of radial basis function units was included

in the architecture. Giving the network a unit for each locus (even though the loci are ini-

tially random placed—see below) may help it stabilize the tri-partite structure (see Tabor,

2011).

Finally, the Gaussian units have first-order connections to the output units, which, as a

group, have the normalized exponential (“soft-max”) activation function, since they

model the probability distribution for the next symbol at each point in time (oiðtÞ is the

activation of the i’th output at time t):

oiðtÞ ¼ expðnetiðtÞÞP
k2Outputs

expðnetkðtÞÞ ð5Þ

netiðtÞ ¼
X

j2Hidden2
wijgjðtÞ ð6Þ

2.4. Training procedure

The network was started with some of its weights in an unbiased state and some in a

randomly biased state. The weights from the input to the linear hidden layer were set to

0 (unbiased). Since the linear hidden self-weights are for implementing contraction and

expansion in the fractal, their unbiased value is 1 and they were set to that value initially.

The Linear and Guassian units need to undergo symmetry breaking since within each of

these layers, the units have to play different roles, so the Linear ? Gaussian and the

Gaussian ? Output weights were initialized to random values uniformly distributed on

[�0.3, 0.3]. The Gaussian biases (which specify the radii of the on-center-off-surround

spheres) were clamped (arbitrarily) at 0.25. The Softmax biases were clamped at 0.

The training was accomplished in corpus-batch mode, using a hill-climbing procedure.

We used a corpus consisting of all distinct grammatical sentences up to length 6 from

L1. These were sampled uniformly. The corpus thus contained sentences with 0, 1, and 2

levels of embedding only. (We will refer to these henceforth as “Level 1,” “Level 2,”

and “Level 3” sentences, respectively). We did not use a random sample from the dendo-

gram language because we wanted to reserve sentences with more than two levels of
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embedding for testing. With the weights at their initial values, the entire corpus was fed

in sequence to the network and, at each word, the layers of the network were updated in

the sequence, Input, Linear, Guassian, and Output. The target for each word was the next

symbol distribution, given the current causal state. Error on a particular word was mea-

sured as Kullback–Leibler Divergence at the output layer (E ¼ P
i tilog

ti
oi
, where ti is the

probability of word i in the current context and oi is the activation of output unit i). The
error was summed over all the words in the corpus to determine the current error value.
Then, the process was repeated for each member of a set of points on a sphere in weight

space around the current point (radius 0.01). Only basis directions and their negatives

were considered. If one of the weight changes produced lower error, then that new value

became the current error value and the process was repeated. This gradient method was

iterated until the mean error per word dropped below 0.001 or no investigated direction

produced a lower error than the current error value.

Matlab code for running this process with L1 and another language (Tabor, 2011) is

available at http://psychology.uconn.edu/labs/solab/papers.html.

2.5. Training results

To test the prediction accuracy of a trained network, we considered all the sentences

in the training corpus. For each such sentence, we set the linear hidden units to 0
0

� �
and

presented the sentence, asking at each juncture between words whether the highest acti-

vated unit on the network’s output layer was among the grammatical possibilities given

the training grammar and the sequence of symbols previously observed. We counted the

word as correctly processed if the answer was “Yes.” We counted a sentence as correctly

parsed if every word in it was correctly processed. This is a slightly less stringent test

than the now standard method of comparing the network’s output activations, interpreted

as a probability distribution, to the distribution of next symbol possibilities as determined

by the training language, but it has the advantage of providing a definitive identification

of grammatical failure (because we count the output as right or wrong, rather than provid-

ing a continuous measure). We chose this method because we were interested in whether

the network had mastered the structure of the language.

The FLNN training algorithm often finds a globally optimal solution, so we only ran

one network and performed further testing on this network. The result of testing the train-

ing corpus in the manner described above was that every sentence was correctly parsed.

We then considered a test corpus consisting of all sentences with four concentric levels

(three levels of embedding) and another consisting of all sentences with five concentric

levels. In the four levels test, the network parsed 79 out of 80 sentences correctly. In the

five levels test, the network parsed 414 of 448 sentences correctly. These results indicate

that the network generalized fairly successfully but did not learn exactly the language L1.

It is important to note that the errors that the network makes are not the result of noisy

processing—there is no noise in the network’s choices in this test. The errors stem from

the structure of the network’s encoding system.
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2.6. Analysis of the fractal learning neural network’s representation

We hypothesized that the FLNN would discover a fractal encoding like that of the

hand wired dynamical automaton described in Section 1 above. Much of the interest of

this hypothesis lies in the interpretation of the word “like.” The analysis reported in

Tabor (2009) suggests that even a minute distortion of a fractal grammar can result in a

system whose behavior is formally (in terms of traditional computational classes) quite

different from the undistorted version. Nevertheless, there is a clear sense in which a

small divergence of the parameters from ideal values results in a system with structural

features closely related to those of the ideal. Here, we define four tests that provide evi-

dence that the trained FLNN model uses a structural system closely related to that of the

ideal fractal grammar of Section 1. In the case of the FLNN, this correspondence is fairly

self-evident in diagrams which we will show. One of our purposes in specifying these

tests and showing how they work in the FLNN is to establish a foundation for a parallel

analysis of the much less representationally transparent SRN, which we provide in the

next section. Our other purpose is to point to ways in which the connectionist models in

focus here appear to make different empirical claims and to be formally different from

the models of classes 1 and 2 mentioned in the introduction.

The four tests are (a) Clustering of causal states, (b) Non-random structural self-simi-

larity between and across scales, (c) Balanced contraction and expansion associated with

pushes and pops, and (d) Ragged progressive generalization. We describe them each in

turn.

2.6.1. Clustering of causal states—fractal learning neural network
Each state in the visitation set of DA1, the dynamical automaton presented above for

L1, corresponds to a causal state of L1. We do not expect the trained FLNN to have a

one-to-one correspondence between visited states and causal states because it is an inex-

act, learning model which converges on a solution only asymptotically. But if it is to

employ approximately the same spatial fractal arrangement as DA1, then the causal states

should correspond to non-overlapping clusters, and these clusters should be organized in

the fractal pattern. Fig. 3 shows a sample visitation set from the trained model, with

points belonging to the same causal state circled and triangles drawn between the means

of the clusters under the same scheme as in Fig. 1. The figure was generated by generat-

ing a random sample of sentences from the training grammar (up to four concentric

clauses), starting the linear hidden units in the state 0
0

� �
at the beginning of each sentence,

and recording the visited states as the network processed the sentence. The z1 and z2 axes

give the activations of the two linear hidden units. As the figure makes evident, the net-

work has non-overlapping clusters corresponding to causal states, at least when tested on

up to four concentric clauses.

2.6.2. Structural self-similarity—fractal learning neural network
Figure 3 makes it visually evident that the generalization is based on a fractal scheme.

To explore this property objectively, we defined a measure of structural similarity across
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the causal state means as follows. Two stack states are called sisters if they differ only in

the bottom-most stack symbol (e.g., XAX and AAX are sisters—top of stack is on the

right). Let s1 ¼ AQ and s2 ¼ XQ, where Q is a finite sequence of stack symbols be

stack states. We call the triangle formed by joining the means of the causal clusters cor-

responding to these stack states with each other and with the mean of the causal cluster

corresponding to Q itself a Local Triangle. If the FLNN has developed a fractal scheme

closely approximating the fractal grammar coding, then all possible local triangles should

be similar: the ratios of corresponding side lengths should be the same. To measure the

degree of this similarity, we consider all local triangles in a sample visitation set and

define fractal misalignment (FM), FM, as follows:

FM ¼
P

i2LT
P

j\i;j2LT std
lQðiÞ�AQðiÞ
lQðjÞ�AQðjÞ

;
lQðiÞ�XQðiÞ
lQðjÞ�XQðjÞ

;
lAQðiÞ�XQðiÞ
lAQðjÞ�XQðjÞ

� �
1
2
jLTjðjLTj � 1Þ ð7Þ

Here, S(k) ðS 2 Q;AQ;XQ; k 2 i; jÞ is the stack state corresponding to a vertex of local

triangle k, LT is the set of indices of all the local triangles derived from a sample visita-

tion set; |LT| is the cardinality of the set of indices; lM�N is the length of the segment
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Fig. 3. The points visited during parsing of all sentences up to length 8 (maximum of four concentric levels).

Points corresponding to the same PDA1 state are circled. Vertices of triangles are placed at the mean of the

points in each circle, marked by crosses. The most deeply embedded causal states were only visited once

each in the test sample, so no circles are drawn around these. See http://psychology.uconn.edu/labs/solab/

papers.html#tabor2013csg for a color figure that distinguishes trained states from untrained.
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joining the mean of the causal state with stack form M to the mean of the causal state

with stack form N. If the triangles are all similar, as they are in DA1, the standard devia-

tion, std, will be zero. To the extent that the triangles deviate from similarity, the measure

will grow more positive. We note this measure captures some, but not all, of the struc-

tural regularity across the fractal (e.g., it does not detect differences in the orientations of

the triangles with respect to one another).8 For fractal grammars like DA1 given above,

FM is identically zero. For the trained FLNN, the value is slightly positive but very close

to zero if we examine the means of causal states with state resetting at the beginning of

each sentence. In the section on the Simple Recurrent Network below, we show the mea-

sure FM provides helpful information about the SRN’s structural development over the

course of training.

2.6.3. Balanced contraction and expansion—fractal learning neural network
The two tests of the network encoding structure considered so far can yield positive

outcomes in a connected space model that uses an infinite region to encode the state

differences—for example, the causal clusters could, in principle be spread out over infinite

area, and the local triangles could repeat their form across this infinite area. In some sense,

this is what a context-free grammar or Turing Machine does using a stack or tape in which

all cells make identical storage demands. The FLNN allows for this in principle, in that the

range of its linear first hidden layer is unbounded. But a key feature of the fractal solution is

that the infinity of the recursion is compressed into a bounded space via the balanced

contraction and expansion of the push and pop events. This property amounts to a short-

shrifting of the encoding resources used for more deeply embedded causal states relative to

less deeply embedded causal states: If there is noise in the encodings, the noise distorts dee-

per embeddings more than shallow ones. This short-shrifting is plausibly related to the well-

known limited ability of humans to process deep center-embeddings—see (Christiansen &

Chater, 1999; Kirov & Frank, 2011). We would like, therefore, to objectively determine

whether the system is exhibiting contraction for pushes and expansion for pops.

This is very easy in the case of the FLNN because the contraction and expansion are

explicitly controlled by the hidden unit self-weights: The multiplier for “Push A” (i.e., the

self-connection on each hidden unit when symbol a is presented on the input) should be less

than 1 and the multiplier for “Pop A” (corresponding to the b symbol) should be greater than

1, and their product should be 1.9 Likewise, the value for “Push X” should be less than 1

and the value for “Pop X” should be greater than 1. For the network at hand, we graphed

these values over the course of training. All four values start at 1 (by design). After a several

hundred epochs, the two push values decrease to a positive fraction and the two pop values

increase symmetrically so they are roughly the inverse of the corresponding push values and

the product stays near 1.10 These findings indicate that the FLNN converges on a balanced

contraction and expansion as in the fractal grammar model.11

2.6.4. Ragged progressive generalization—fractal learning neural network
To probe the structure of the networks’ encoding over the course of its development,

we fixed the weights at the end of each training epoch and examined the visitation set
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associated with sentence-initial sequences of up to four pushes in a row (i.e., the locations

reached at the ends of the strings a, x, aa, ax, xa, xx, aaa,… xxxx), always starting the

network at the origin. If the network implements a fractal grammar, this set should be a

complete inventory of the largest four scales of the fractal. Fig. 4 shows the development

of this set over the course of learning.

Several properties of Fig. 4 are worth noting. The figure illustrates how a point can

continuously deform into a totally disconnected fractal where the network of the final

fractal is formally equivalent to (generates the same formal language as) a simple sym-

bolic mechanism.12 Using the target language as a reference point, the network becomes

able, early in training, to process the sentences with the least embedding (ab, xy). But

when the fractal branches are overlapping, the causal states are not all linearly separable

from one another and the network makes mistakes on more deeply embedded sentences.

Over the course of training, the branches gradually separate and increasingly many causal

states are successfully processed. The figure suggests that the network extends its parsing

ability with respect to the target language gradually, going far beyond its input, but suc-

ceeding in parsing some sentences at a given recursive level earlier than others. Fig. 5

shows success by individual sentence type as a function of training epoch for the sample

network. There are ranges of epochs when the network seems to be making a transition

from one level to another, but the transitions have a ragged character—some sentence

forms succeed before others. It is important to note that this raggedness is not noise in

the ordinary sense: At any one point in time, there is no noise in the weights or the acti-

vations of the network that is producing the inconsistent judgments between sentence

forms at the same grammatical level. This suggests that the ragged behavior is part of the

structure of the transitional network’s representation, not the result of probabilistic sam-

pling between two grammatical states, one of which rejects a sentence form and another

of which accepts it. To emulate one of these intermediate stages with a symbolic model,

we would need to write a rather complex symbolic description, perhaps one that simply

had a separate rule for each sentence that the network judged grammatical. A simple

form of ragged progressive generalization has been observed in all the previous studies of

neural networks learning counting recursion: Depending on the random initial weights

and the random variation in the training sequence, the network generalizes to different

finite degrees of embedding beyond its training sample (e.g., Rodriguez, 2001). While

symbolic models with variable stack capacity (Lewis, 1996) can show similar ragged

behavior on linear state growth languages, this variable stack capacity approach fails to

predict the ragged progressive pattern in exponential state growth languages.

The fractal unfolding illustrated in Fig. 4 is of interest because it allows us to examine

emergence of form in a connectionist model at a level of description (computational) that

gets at its general properties. In this sense, it helps us go beyond simulation methods.

The result is also of interest with respect to the long-standing debate about whether lan-

guage is a special human ability for which our genes tailor the outcome: Some connec-

tionist networks are very general learning devices—they can be applied to a great range

of problems across different domains and have fair success. The FLNN is not (at least

not yet) known to be such a general device. There are several ways in which the system
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Fig. 4. The development of the fractal structure during learning of language L1. (A) At the beginning, the

Linear Unit self-weights and the Input ? Linear Unit weights are all zero, so inputs evoke no change in the

hidden activations. (B) After some time, the visitation set lie on a one-dimensional manifold. In fact, the

visited states lie at discrete points on this manifold, but these have been connected by a line segment in the

figure to make them more visible. (C) The visitation set has expanded into two dimensions and is unbounded—
each push causes a displacement of the same magnitude; in the figure, the visited points are connected by

line segments and appear at the corners of triangles; the triangles have been shaded to distinguish states for

which the top of stack is A (upper left to lower right shading) from states for which it is X (lower left to

upper right shading). (D and E) The A and X branches of the set spread apart gradually and simultaneously

shrink down to a small finite size; (F) eventually the set becomes a totally disconnected fractal—its branches

do not overlap (Barnsley, [1988]1993).
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is tailored to facilitate the outcome: The number of Linear Hidden Units and the number

of Gaussian Units were chosen with knowledge of what is needed for the problem; the

selective use of second-order connections and the absence of any non-self-connections

between the Linear Hidden units restricts the search space to parameterizations that favor

a fractal form; the self-weights on the two hidden units were yoked so that self-weights

corresponding to the same input had to have the same value.13 It is also possible that the

very simple scheme for hill climbing, which only adjusts one weight at a time and

employs only one step size, somehow narrows the search space so that the system is

guided to the fractal form. For these reasons, it is worth asking whether principles of

organization and learning suggested by this simulation extend to other connectionist

learning regimes that are not so restricted. These considerations motivated an investiga-

tion of the much more general Simple Recurrent Network trained on a recursive lan-

guage, which we report on in the next section.

3. Training a Simple Recurrent Network on a similar language

The SRN (Elman, 1990) is the most extensively studied neural network symbol pro-

cessing model. It has made a range of plausible predictions about grammatical patterning

(Elman, 1991), sentence processing (Christiansen & Chater, 1999; Rohde, 2002), and arti-

ficial grammar learning (Misyak et al., 2010) among other domains. As we indicated
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Fig. 5. Ragged progressive generalization in the FLNN. Each row corresponds to a sentence form. A black/

white square indicates that parsing failed/succeed on every sentence of that form at the epoch corresponding

to the column. The graph shows all of the Level 1, 2, and 3 sentences and a small sample of the many Level

4 sentences. For ease of viewing, only epochs 1,050–2,850 are displayed. Eventually (the network was trained

to epoch 5,825) all but one Level 4 sentence was correctly parsed, indicating substantial generalization

beyond the input. We call this “progressive generalization” because the network extends to higher levels of

embedding on the basis of lower level training, and “ragged generalization” because not all sentences of the

same level are successfully parsed at the same time.
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above, it is also a more generic architecture than the FLNN. Furthermore, Elman

(1991)’s results suggest that an SRN can learn recursive languages corresponding to push-

down automata with control state changes. Rodriguez (2001) trained an SRN on the pal-

indrome language of Table 4. The network performed poorly—the best of 250 networks

trained up to seven concentric levels only got 78% of the training sentences correct.

Rodriguez found highly suggestive evidence of a fractal encoding scheme, using graphing

and a hand-designed linear approximation (see Tabor, 2011). We now use the analysis

methods developed for the FLNN above to probe a similar SRN, gleaning insight into

how the network is like, but also unlike, a pushdown automaton.

We trained an SRN on a sequence generated by Language L2 (Table 4). We used L2,

instead of L1 following Rodriguez, and also because we undertook parallel artificial

grammar studies with humans (not reported here—see Cho et al., 2011; Tabor, Cho, &

Szkudlarek, 2012), and we suspected that humans would have an easier time with L2

than L1: The average number of words over which stack symbols at a particular embed-

ding level must be kept on the stack in L1 is longer than it is in L2; L2 has a period

symbol, “p,” which marks the end of every sentence; we think this makes it easier for

humans to get oriented in the structure initially.

We implemented the core model with Michal Cernansky’s code (http://www2.fiit.stuba.

sk/˜cernans/main/download.html). The activation and weight dynamics for this model are

specified by Equations 8 and 9, respectively (Rumelhart, Hinton, & Williams, 1986).

hðtÞ ¼ f ðWHH � hðt � 1Þ þWHI � sðtÞ þ bHÞ
oðtÞ ¼ f ðWOH � hðtÞ þ bOÞ
f ðxÞ ¼ 1

1þe�x
ð8Þ

Dwij / � @E

@wij
ð9Þ

Here, s(t) is the vector of input unit activations at time step t, bH and bO are the biases

on the hidden and output units, respectively, WHI are the weights from input to hidden

units, WHH are the recurrent hidden connections, and WOH are the weights from hidden

to output. E is the total error across patterns, defined as summed Kullback-Leibler

Table 4

CFG2, the grammar of Language L2. This grammar specifies the probabilities of some productions with vari-

ables (2p1 þ 2p2 ¼ 1) because we did not use a stationary training distribution—see further discussion in

the text

1.0 Root ? S p

p1 S ? a S b

p1 S ? x S y

p2 S ? a b

p2 S ? x y
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divergence between outputs and targets. The network had five input units (one for each

word in L2), five output units, and ten hidden units.

3.1. Training

At each trial, the network received an indexical bit vector corresponding to one of the

five sentence symbols on its input layer. It was trained on the task of predicting, on the

output layer, which symbol would occur next at each point. The error gradient of (9) was

approximated using Backpropagation Through Time (Rumelhart et al., 1986) with eight

time steps unfolded. The constant of proportionality in (9) (called the “learning rate”)

was set to 0.05.

Following arguments by Newport (1990) that their limited working memories might

help children learn complex languages by sparing them the trouble of dealing with com-

plex temporal structures early on, Elman (1993) offered evidence that a SRN trained on

recursive structure in batches (first Level 1, later Levels 1 and 2) did much better at

learning the training corpus than one which received all sentence types from the start.

However, Rohde and Plaut (1999) tried to replicate Elman’s results and could not, argu-

ing that “starting small” was not the issue. We hypothesized that graded training regi-

mens are potentially helpful, but only if the staging is sensitive to the way a particular

network (with particular random initial weights and a particular sequence of experience

with the training data) is developing. We therefore trained 20 networks with different ran-

dom initial weights progressively, exposing them first to Level 1 sentences, then to a

mixture of Level 1s and 2s, and finally to a mixture of all Levels 1–3. The proportions of

sentences of each form were determined by dividing sentence probability equally between

levels (e.g., if Levels 1 and 2 were being trained, then 50% of the corpus were Level 1

sentences and 50% were Level 2) and dividing the probability among sentence forms

equally within each level (e.g., there are four Level 2 sentences in L2, so for Level 1 and

2 training, the network saw each Level 2 sentence approximately 50/4 = 12.5% of the

time). Rather than using a fixed regimen, we monitored the networks as they were learn-

ing and only presented the next recursive level after the network could correctly parse

each current level.14

To check on the effectiveness of the adaptive training, we did a yoked training of 20

additional randomly initialized networks, assigning one of them to each of the original

networks. The new network then received exactly the same sequence of training trials

that its partner had received. If the adaptive training confers no advantage, we would

expect no difference between the end of training accuracy for the original networks and

the yoked networks.

3.2. Training results

To evaluate the networks’ prediction accuracy at the end of training, we presented each

of the 20 networks with a 1,400-sentence corpus generated randomly from the final-stage

training distribution with learning turned off. We assessed the successful parsing of each
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sentence in this sample by the same method as in the Training Results for the FLNN

described above: The maximally activated output had to be a grammatical continuation,

given the history of symbols observed, at every juncture. Unlike with the FLNN, though,

we did not reset the hidden state at the start of every sentence. The average rate of cor-

rect sentence parsing of the adaptively trained networks was 98.4% (SD 0.69). We take

this as evidence that the networks learned the structure of the training language well.15

For the 20 networks that did not receive adaptive training, the average end-of-training

rate of correct parsing (evaluated with respect to the same 1,400 sentence test corpus)

was 94.7% (SD 2.2). A paired t-test indicated the adaptively trained networks performed

better than their yoked controls, suggesting that the progressive training confers an

advantage.

3.3. Analysis of the Simple Recurrent Network’s representation

We investigated structure in the hidden activation patterns of the SRN using the same

four methods that we used to assess fractal structure in the Linear Hidden Units of the

FLNN. We discuss each of these in turn.

3.3.1. Clustering of causal states—Simple Recurrent Network
We could not use simple graphing to assess the clustering of the causal states in the

SRN’s hidden space because it has 10 dimensions. Instead, we presented the network

with the same 1,400 sentence testing corpus described in the preceding section and

grouped the visitation set points by their causal states. We then asked, for each of these

groups of points whether it was pairwise linearly separable from each other group. Test-

ing for pairwise linear separability is a way of finding out if the causal states of the train-

ing environment correspond to clusters in the network’s visitation set.

We tested linear separability between every unique pair of PDA states with a support

vector machine (SVM; Boser, Guyon, & Vapnik, 1992; Cortes & Vapnik, 1995) employ-

ing a linear kernel function and the sequential minimal optimization algorithm (Platt,

1998) (see Elizondo, 2006 for review). An SVM learns to classify points in a vector

space into two classes when presented with a set of training data and their corresponding

classes. In our case, for each unique pair of PDA states, an SVM was trained to classify

all their corresponding hidden state vectors into one of the two PDA states and then

tested with the same data set. If the SVM correctly classified the hidden states into their

corresponding PDA states with no exception, those two PDA states were judged to be lin-

early separable. The set of all hidden states that a network visited in the test run is pair-

wise linearly separable if every unique pair of PDA states is linearly separable. All 20 of

the networks described passed this test for pairwise linear separability of causal states,

consistent with our fractal model’s prediction.

3.3.2. Structural self-similarity—Simple Recurrent Network
We expected the structural self-similarity of the visitation set to increase over the

course of training, in keeping with our hypothesis that the SRN develops a fractal
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encoding. Fig. 6 displays a principal component projection of the causal states of push

sequences up to four concentric levels at the end of training of one sample network

among the 20 trained (a similar figure can be constructed for pop states). Local triangles

are drawn in the figure. To assess change in the self-similarity, we computed the FM of

the network based on the causal state means derived in Section 1 Clustering of causal
states—SRN above (sentences containing up to three concentric levels). For each of the

20 networks, we computed FM at the random initial state, and at the ends of training

phases 1, 2, and 3. Almost all FM curves decreased monotonically over the course of

training. A regression analysis indicated that the negative trend was significant, consistent

with our hypothesis that the network should become more structurally self-similar over

the course of training.16

3.3.3. Balanced contraction and expansion—Simple Recurrent Network
In the FLNN, we were able to examine the weights of the network directly to assess

the claim that the pushes were contractive and the pops inverted the contraction. In the

SRN, we do not know how to assess this property directly from the weights. Instead, we

employed a language sample with up to four concentric levels (using the same distribu-

tional scheme as in the training corpus), examined the same types of triangles used in the

three-point fractal misalignment analysis of the last section and recorded the ratios of

sides of triangles across adjacent levels. For each of the 20 networks, we averaged all the

side ratios associated with pairs of touching triangles, segregating the results by level and

by whether a push or pop transition was involved. We computed these results at each

stage of the network’s training: random initial weights (phase 0) and the ends of phases

1, 2, and 3. Our prediction was that the SRN training would bring the push and pop
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Fig. 6. A principal component projection of the hidden states of a sample trained SRN with visitation points

for sequences of push trials shown. Triangles connect the means of causal states according to the scheme of

Section (2) Structural self-similarity—FLNN.
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operations into a multiplicative inverse relationship, as we observed in the FLNN. Thus,

we examined the product of the push ratio with the pop ratio over the course of training,

expecting this value to approach 1. Unlike the FLNN, which was initialized at the ratio 1

and stayed close that value throughout training, the SRN started far from this ratio.

Because, when the network has not converged on a perfect fractal, the ratio might either

be greater or less than 1, we computed |1 � ratio| and regressed this against phase. As

predicted, the results showed a significant trend toward multiplicative balance between

the pushes and pops.17 We checked to make sure the final ratio corresponded to inversion

rather than equality by considering average log of the push ratios and the average log of

the pop ratios. The former was significantly below 0 (one-sample t-test, p < .0001) and

the latter significantly above (one-sample t-test, p < .0001), in keeping with the fractal

grammar prediction.

3.3.4. Ragged progressive generalization—Simple Recurrent Network
In the FLNN, we noted “ragged” generalization beyond the input on the way to very

good approximation of the ideal recursive system. The SRNs did not generalize nearly as

well—the networks fully trained on up to three concentric levels only got 5.8% (SD
7.5%) of the 963 test sentences right at four levels. Nevertheless, a subset of these net-

works showed robust evidence of generalization to sentences beyond their training sample

at various times. At the end of the second phase of training, when the networks had not

yet experienced any Level 3 sentences, six of the 20 trained networks showed persistent

ability to correctly parse some but not all of the Level 3 sentences. Fig. 7 shows the
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Fig. 7. Ragged progression and progressive generalization in an SRN. Each row corresponds to a sentence

form. Each column corresponds to a training epoch. A black/white square indicates that parsing failed/suc-

ceed on every sentence of that form at the epoch corresponding to the column. Gray squares indicate interme-

diate rates of success. The numbers in square brackets at the bottom of the figure mark the ends of training

phases: [N] = end of training on levels 1-N.
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accuracy on all Level 1–3 sentences over the course of training for one of these general-

izing SRNs. In this case, the network was tested on a sample corpus with up to Level 3

sentences. Unlike in the FLNN, where we tested each sentence from a fixed initial hidden

state, the sentences in the SRN test were presented in the context of previous sentences

and thus could vary in behavior across the test sample—this variable behavior is indi-

cated by the gray shading in the figure. As in the FLNN case described above, the figure

illustrates progressive generalization: Before the end of Phase 2 (training on Levels 1–2
only), the network exhibits correct parsing of some Level 3 sentences. This behavior is

robust in the sense that under repeated tests, with different randomly sampled test cor-

pora, the type and number of Level 3 sentences that are correctly parsed remains about

the same. The figure also provides evidence for ragged generalization: Sentences from

the same level start being correctly parsed at different times. It is notable that, in many

cases of these ragged progressions, once a sentence starts being correctly parsed, it con-

tinues to be correctly parsed through the end of training. This suggests that the ragged

developments bring the system toward the recursive solution: They are an aspect of the

gradual emergence of the recursive structure. In the Conclusion, we point out some ways

that this property might be used to clarify the relationship between the connectionist and

probabilistic models mentioned in the Introduction.

4. Conclusions

We have presented evidence that a particular type of fractal encoding scheme arises

when recurrent connectionist networks are trained to process center-embedding languages.

We examined two kinds of recurrent networks: The FLNN, which is carefully designed

to develop fractal systems in a conveniently linear recurrent layer, and the SRN, which

has been explored in a much wider variety of settings and shows some robust learning

characteristics but has a non-linear recurrent layer and is consequently harder to analyze.

We identified four features that helped to diagnose fractal organization in both types of

networks: (a) clustering of causal states, (b) structural self-similarity, (c) balancing of

contraction and expansion, and (d) ragged progressive generalization. We also found that

an adaptive training scheme, in which the SRN was presented with higher levels of

embedding only after it had mastered lower levels, seemed to facilitate training.

As we suggested in the introduction, we think the main news is that it is possible to

examine learned recurrent connectionist network representations at a level of description

(the fractals) that is closely related that of symbolic mechanisms. This provides clarifica-

tion of how the connectionist models work. It also offers a basis for further comparison

between the approaches.

We return now to the point that motivated the article: explaining gradual aspects of

language learning and language change and the relationship between approach [3]—the

connectionist approach—and approaches [1] and [2], which explain gradualness via vari-

ous kinds of probabilistic mixtures of symbolic behaviors. Our aim here is not to fully

specify this relationship. We think that needs to be done via further mathematical and
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empirical work. We suggest that the current observations provide helpful motivation and

tools for that further work.

Regarding approach [1], which proposed that intermediate probabilities in sample data

stem from mixtures of individuals, who themselves have simple symbolic grammars at all

times, the current proposal makes a very simple suggestion: Seek evidence for gradual-

ness within individuals. As a step in this direction, we have been exploring an artificial

language learning paradigm called Locus Prediction in which participants learn complex

recursive languages on the basis of exposure to data (Cho et al., 2011; Tabor et al.,

2012). Crucially, the task of Locus Prediction provides word-by-word information about

participant’s expectations (see also Misyak et al., 2010) so the data can be compared in

some detail to the predictions of the models described here.

Approaches [2a] and [2b], in the learning case, posit that the learner has a set of either

grammars or rules at his or her disposal and adjusts probabilities on these to best fit the

information provided by the training signal. To keep the system from overfitting the data,

many such models posit an anti-complexity bias and a corresponding complexity-evalua-

tion measure for symbolic systems. The anti-complexity bias, working in conjunction

with a rational (e.g., Bayesian) inference mechanism generally predicts that the system

will progress from simple models to more complex ones with greater complexity adopted

only if it is warranted by the data (e.g., Perfors, Tenenbaum, & Regier, 2011; Xu &

Tenenbaum, 2007). The connectionist models we have just reviewed show odd behavior

in this regard: The models begin in what seems to be a very simple state (though it may

contain hidden complexity in the random weights), and they ultimately approximate a

somewhat more complex but still highly ordered behavior. On the way, they pass through

states of behavior that seem to be very complex—odd subsets of the target language are

accepted as grammatical. We recognize that we are examining the intermediate stages

through the lens of the target language. It is possible that they would seem simpler if

viewed from another point of view. However, they also may be very complex. Our work

on related cases suggests that the intermediate states can be very complex (Tabor, 2009).

This complexity stems from the interaction of the network’s connected parameter space

with the environment—in traveling continuously from one ordered state to another, the

network passes through an uncountable infinity of intermediate parameter states. Some of

these are associated with very complex behaviors. This suggests that two efforts will be

helpful: One is to establish formally the nature of the structure of the intermediate states

in the connectionist models. The other is to find out what people do in such cases. The

current observations suggest that looking for highly complex intermediate behavior that is

reliable (not noise) is a good way to distinguish between the approaches.

We raised the question in the Introduction whether the fact that Turing Machines can

approximate connectionist devices arbitrarily closely means that the difference between

the two approaches is so small that we might as well ignore it, especially from an empiri-

cal standpoint. Some questions need to be addressed before such a conclusion can be

drawn. A natural approach to making Turing devices that approximate the connectedness

of a particular connectionist device is to introduce a graph structure on a set of appropri-

ately designed Turing Machines which recapitulates the adjacency relationships between
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small neighborhoods in the connectionist parameter space. The idea is that changes of

Turing Machine parameters are expected to proceed along paths of connected vertices in

the graph, thus approximating continuous grammar change. But then the question arises,

How does a language user who has just changed to a new Turing device decide how to

parse the next word she encounters? In the connectionist model, the processing states

before and after the parameter change all lie in the same space (e.g., the hidden unit

space of the SRN), and change in the distribution over these states is continuous, so it

works well to use the current state as an approximation of the new state. But for the Tur-

ing devices, there is not an obvious, principled set of proximity relationships between the

states of one Turing Machine and the states of a different one—in many cases, the state

spaces have different topologies. At this point, a natural move is to turn away from a

focus on individual states, and toward a focus on the distribution over observed events

under a probabilistic version of the machine (this is the approach taken by many compu-

tational linguistic methods which employ probabilistic rules and some measure of the fit

between observed data and models with different rules—e.g., Perfors et al., 2011). But

then the language user needs to consider a large sample of sentences to establish the cur-

rent parse. Being obliged to parse the next word within a few hundred milliseconds, she

cannot afford to collect a sample of millions of words before the decision is made. The

only choice would seem to be to use the sample of previously observed utterances to

select the parameters of the new grammar. If, however, we are trying to achieve

fine-grained approximation of the changing grammars, this sample will not be very

representative of the current language state because it includes many sentences generated

by obsolete grammatical systems. Such a system would seem to have a bias toward the

past. These considerations suggest that the distinction between the theories will be

brought out by examining the advent of new forms—our intuition is that the Turing

Machine induction approach will never change the rule system to generate structural

types that have not previously been attested, as occurs in language change (Tabor, 1994,

1995) and therefore also in the transition between older generations and younger genera-

tions (in which language development may play a role).

Finally, we note a concept from dynamical systems theory that is helpful in further

elucidating the nature of the connectionist systems (see also Kukona & Tabor, 2011;

Tabor & Hutchins, 2004). A subset of dynamical systems exhibits a property called self-
organization: Many small autonomously acting, but interacting, elements exhibit orga-

nized structure at the scale of the ensemble. Insect societies are a well-known case from

ecology: Many interacting ants (or termites or bees) form a structure with global organiz-

ing principles even though a blueprint for this global organization does not appear to

reside in any individual (Gordon, 2010). Self-organization arrives at order from disorder:

Elements quite capable of failing to coordinate nevertheless coordinate due to continuous

feedback interactions between them. We can find evidence for their self-organization by

detecting systematicity in their non-conformity (Tabor, Galantucci, & Richardson, 2004).

This is in contrast to an engineered system in which many parts are designed to behave

in a precisely coordinated way and deviations have the form of noise. The neural net-

works that use fractals are more like the self-organizing systems; traditional symbolic
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models are more like the engineered systems. In particular, where a symbolic model uses

a single rule to specify behavior context independently in a large (infinite) sample of

cases, the connectionist models use different parts of the fractal structure to handle the

same range of cases. If the fractal is either perfect, or randomly fuzzy, then the connec-

tionist model is indistinguishable from the symbolic models. But if there are deviations

like those detected by the ragged progressive generalization analysis, then the self-orga-

nizing nature of the connectionist model becomes apparent: Many independent parts are

coming together to give the appearance of a single rule. For present purposes, the interest

of the self-organizing viewpoint is that the deviations, not being random, seem to be

arrayed on complex pathways that lead from one ordered state to another. Discerning the

structure of these pathways may help us understand how complex coordinated structure is

able to come into existence in language learning and change.
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Notes

1. A space X is connected if it cannot be divided into two disjoint, non-empty open

sets (Munkres, 2000). For example, R and intervals between pairs of points in R
are connected spaces under the standard “order topology” on R, based on the order-

ing of the real numbers. Sets of discrete points in R, like the integers and rationals,

are not connected. Countable sets naturally have a discrete topology, making them

disconnected.

2. One can create a connected topology for a countable set, but there is not a single,

obvious way of doing so, and there may be some challenges to doing so in the case

of Turing Machines—see Conclusions.

3. A formal language is called a counting recursion language if it can be processed

by a pushdown automaton with only one stack symbol—that is, the stack only

serves as a counter; it need not keep track of embedding order. In counting recur-

sion languages, the number of stack states needed for processing grows linearly

with the length of the string. Such linear state growth languages may be contrasted

with exponential state growth languages, where the number of stack states grows

exponentially with the length of the string. Mirror recursion languages, in which

the stack needs more than one symbol and grows and shrinks exactly once per sen-

tence, are a type of exponential state growth language.
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4. A metric space S is a space in which a distance metric is defined. A distance met-
ric is a function d: S 9 S ? R satisfying d(x,x) = 0, d(x,y) = d(y,x) and d(x,y) + d
(y,z) ≥ d(x,z) for x,y,z ∈ S. Introducing a metric, here, is a way of taken advan-

tage of the connectedness assumed in the introduction to make precise the notion,

“arbitrarily small changes” mentioned there. A space X is complete if it contains

all of its limit points. A point s ∈ S is called a limit point of X ⊆ S if every

neighborhood of s contains an element of X that is different from s. Completeness

is helpful because some of the limit points give rise to super-Turing behaviors that

are not otherwise exhibited. This helps clarify the difference between symbolic and

connected space “computation” (see Tabor, 2009).

5. Some of the languages generated by the connected space computers are not com-

putable (a.k.a. “Super-Turing”). The non-computable languages are not sequestered

in obscure corners of the parameter spaces but are densely interleaved with the

computable ones. Tabor (2009) therefore suggests moving away from a perspective

whose overriding concern is to pin down the presumed single nature of each com-

putational process and toward a perspective in which processes are viewed in prox-

imity and path relationships to one another.

6. Having introduced probabilities of rules, we will now assume that the sentences gen-

erated by the grammar are repeatedly sampled and strung end to end forever. We

will thus switch to using the term language to refer to an assignment of probabilities

to branches in the infinitely branching dendogram which specifies all the possible

one-sided infinite strings that can be generated with the symbols of the alphabet.

7. In the language’s dendogram, nodes correspond to transitions between symbols.

We will consider two nodes to be identical if the subtrees they beget are exactly

the same—same branching structure and same probabilities forever. The causal

states are then the equivalence classes of nodes.

8. The measure can be straightforwardly extended to probe fractal organization more

fully by having it assess the similarity of more complex polygonal simplexes.

9. Recall that the recurrent connections were yoked between the hidden units so these

values are the same on both hidden units.

10. When the first divergence from 1 occurs, it occurs simultaneously for both push

and pop, but contraction outweighs the expansion briefly, so the product becomes

less than one and then it migrates back slowly toward 1 over the course of the

remaining training.

11. An alternative method of testing for balance examines Lyapunov exponents—
these give the average of the log of the rate of contraction in all principal direc-

tions on the attractor of an autonomous dynamical system; adopting a generaliza-

tion suitable to the type of driven systems considered here, the largest Lyapunov

exponent is 0 in a fractal grammar driven by a grammatical sample, and our ear-

lier work (Tabor, 2002) suggests that it tends to zero in SRNs trained on stack

and queue languages. Because our interest here is in understanding the explicit

relationship between the fractal model and the actions of a PDA, we examined

contraction and expansion separately.
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12. In fact, the trained network is not exactly equivalent to PDA1, because the tuning

of the pop and push relationship is not perfect, but it is very close (see the previ-

ous section) and it is easy to understand conceptually how it could be perfect.

13. The model still discovers fractal solutions without this constraint, but the solutions

are generally closer to an idealized fractal when this constraint is enforced.

14. The network was tested after every 200 sentence presentations as follows: For

each unique sentence form in the training corpus at a given phase, we initialized

the hidden units to the state they occupied at the end of the last training sentence.

We then presented three Level 1 sentences in a row to bring the hidden units to

an appropriate sentence-initial state, then presented the test sentence, checking the

pop transitions, which have unique next symbols, to see whether the unit corre-

sponding to the correct next symbol was the highest activated among the five out-

put units. If the network passed this test for every distinct sentence form at a

given level, training on the next level commenced.

15. Although these results compare favorably to the considerably lower figures

reported by Rodriguez (2001), we only trained our networks up to three concentric

levels, compared to his seven. We stopped at three because our purpose was not

to achieve high accuracy at great depth but to examine the principles of the

encoding scheme.

16. The empirical FMs were modeled separately, using a linear mixed-effects model

(Baayen, Davidson, & Bates, 2008). We ran the analysis of FM twice, once for

states following pushes and the other for states following pops, in R, using the

lme4 package. In both cases, the dependent variable was the empirical FM and

the fixed-effect variable was training phase number (“PhaseNo”). The NetID was

included for random intercepts. The effect of PhaseNo was evaluated by compar-

ing a model with PhaseNo as a predictor and one without it, using a likelihood

ratio test. The effect of PhaseNo was significant both for push FMs (b = �0.481,
bse = 0.083, x2(1) = 26.89, p < .0001) and for pop-FMs (b = �0.242, bse = 0.021,

x2(1) = 79.00, p < .0001).

17. We used a linear mixed-effects model (Baayen et al., 2008). As in the FM analy-

sis, the models were fitted in R, using the lme4 package. The dependent variable

was the distance from perfect balance; the fixed-effect variables were a continuous

variable, PhaseNo, and a categorical variable, Level. The random intercepts of

NetID were included to control the interdependency among the data points. The

fixed effects were evaluated by model comparison, adding a fixed-effects term

while keeping the same random-effects term. The base model (Model0) had only

the intercept term. Adding PhaseNo to the base model (Model1) decreased the

deviance measure significantly (x2(1) = 254.18, p < .0001). Adding Level to this

new model (Model 2) decreased the deviance measure again (x2(1) = 46.83,

p < .0001). However, adding the interaction term between two predictors

(Model3) did not decrease the deviance measures further (x2(1) = 0.32, p = .570).

The coefficients of PhaseNo and Level from Model 2 were �0.280 (SE = 0.010)

and 0.160 (SE = 0.022), respectively. The positive coefficient of Level in Model
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2 indicates the ratio was more distant from perfect balance when the ratio was

based on Level 2 versus 3, as compared to when it was based on Level 1 versus

2. This may be due to the fact that the network was only trained up to Level 3

and only partially generalized to Level 4, which is involved in the computation of

the Level 2 versus 3 ratio on the pop side. The negative coefficient of PhaseNo in

Model 2 is consistent with our prediction that training drives the ratio to 1.
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