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Abstract 

The visual world paradigm presents listeners with a challenging problem: they must 

integrate two disparate signals, the spoken language and the visual context, in support of action 

(e.g., complex movements of the eyes across a scene). We present Impulse Processing, a 

dynamical systems approach to incremental eye movements in the visual world that suggests a 

framework for integrating language, vision, and action generally. Our approach assumes that 

impulses driven by the language and the visual context impinge minutely on a dynamical 

landscape of attractors corresponding to the potential eye-movement behaviors of the system. 

We test three unique predictions of our approach in an empirical study in the visual world 

paradigm, and describe an implementation in an artificial neural network. We discuss the 

Impulse Processing framework in relation to other models of the visual world paradigm. 
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1. Introduction 

 

1.1. The visual world paradigm 

 

The technique of eye tracking in the visual world paradigm (VWP) has provided many 

new insights into the temporal dynamics of language processing (e.g., Allopenna, Magnuson, & 

Tanenhaus, 1998; Altmann & Kamide, 1999, 2007, 2009; Chambers, Tanenhaus, & Magnuson, 

2004; Knoeferle & Crocker, 2006, 2007; Tanenhaus, Spivey-Knowlton, Eberhard & Sedivy, 

1995). In this paradigm, listeners are presented with both a visual context and language about 

that context, and they are typically instructed to interact with the items in the visual context in 

some way. Listeners completing tasks in the VWP must integrate two informationally dense but 

disparate signals, the spoken language and the visual context, and execute, in response, complex 

patterns of eye movements across the “visual world.” 

To fully understand data from this paradigm, one needs a framework that specifies how 

the mental system interacts with both verbal and visual information, and integrates them in 

support of action. In line with several previous models of VWP data (e.g., Allopenna et al, 1998; 

Mayberry, Crocker, & Knoeferle, 2009; Spivey, 2007), we suggest that dynamical systems 

theory (e.g., Abraham & Shaw, 1992; Strogatz, 1994) provides a common currency that is well 

suited to this purpose. 

Although we focus on the VWP in the present work, our interest is not simply in eye 

movements in highly constraining contexts. Rather, we use the VWP as a testing ground for our 

dynamical systems approach, with its tight experimental control, and its rich behavioral 

measures. Based on these results, we suggest that the approach provides a general framework for 
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understanding the link between cognition and action more broadly. 

 

1.2. The dynamical systems approach 

 

Dynamical systems theory is a general framework for studying interactions among inter-

dependent variables. An often-studied type of dynamical system is organized around a set of 

“attractors,” or stable states that the system returns to when it is perturbed. Such systems are well 

suited to modeling the regularity of human behavior in the presence of input coming from 

multiple modalities, with unpredictable and only loosely coordinated timing, because the 

attractors reduce the variability to a few interpretable patterns. In fact, most current formal 

models of VWP data are dynamical systems with attractors, typically implemented as groups of 

neuron-like (connectionist) elements with feedback connections. While some of these models 

focus on individual word perception (e.g., Allopenna et al., 1998; Spivey, 2007), others address 

the integration of information coming from multiple words in a sentence (e.g., Mayberrry et al., 

2009; see also Roy & Mukherjee, 2005). 

Here, we offer a general framework, called Impulse Processing, for understanding the 

coordination of verbal and visual input in support of action. We thus focus, for the action part, on 

the movement of the eyes across a visual scene. Our framework addresses incremental 

interpretation of multi-word sentences, and models the progression of eye movements as the 

sentence unfolds. This problem is a complex one, involving many aspects of language 

processing: speech recognition, syntactic, semantic, and pragmatic interpretation, coordination 

with motor systems, etc. We do not implement solutions to all of these problems here. Instead, 

we show that if we make well-motivated assumptions about the information structure in each of 
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these areas, then we can build a dynamical model that smoothly integrates the information, and 

makes several distinctive empirical predictions about the way structures form. Implementation 

and empirical testing of one part of this dynamical model are described in Section 3. We believe 

that the attractor-based approach provides a particularly effective foundation for the kind of 

large, interdisciplinary undertaking that is needed to make a full, functioning model of language 

understanding. 

The central hypotheses of Impulse Processing are: 

1. The system’s dynamics involve noisy movement on a landscape of attractors. 

2. The landscape’s shape is continually adjusted by small impulses reflecting the 

current interpretation of verbal and visual input. 

3. States of the system correspond to actions. 

 The landscape of attractors proposed under Impulse Processing is a continuous surface 

with ridges and valleys, as depicted in Fig. 1. The landscape may be thought of as characterizing 

an aspect of the nervous system of a human who is listening to language, while focusing on a 

visual scene, and looking, at each moment in time, at an object in the visual scene. Regions in the 

landscape are associated with objects in the visual scene: if the system is at a location in the 

region corresponding to a particular object in the visual scene, then, assuming that other features 

of the nervous system’s state do not suppress the impulse, the system directs its gaze at that 

object. In other words, the location on the landscape specifies the action (cf. Jacobs & Michaels, 

2007). 

We focus here on the action of the eyes, which, in the context of the motionless scenes 

we consider here, consists of a series of fixations of various durations. In Fig. 1, the regions 

associated with some sample objects are indicated on the plane below the surface. The landscape 
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is a potential surface for the dynamics of the system. This means that the behavior of the system 

can be conceptualized as the action of a drop of water sliding down the landscape. The local 

minima of the landscape thus correspond to attractors of the system.1 If such a landscape of 

smooth ridges and valleys were unchanging, then the system would eventually gravitate to an 

attractor and stay there, thus fixating indefinitely on whatever object’s region contained the 

attractor. However, the system is not static—it changes due to the impulses, which can be caused 

by the speech signal, by other changes in the external environment, by changes in where the 

system is looking, which affect its relationship to the external environment, or by changes in 

other aspects of the nervous system (e.g., memories). Although we focus on verbal and visual 

input at present, the framework is sufficiently general to handle inputs from any number of 

sensory sources. 

The forces which adjust the landscape can, in principle, be very complex. We assume that 

one aspect of the adjustment consists of minute, random variation in the position of the system 

on the landscape. Such noise may be thought of as corresponding to the small-scale, apparently 

random variation in the activity levels of neurons. The noise does not, in general, have a large 

influence on the shape of the system’s trajectories, and the corresponding looking behaviors. 

However, when the system is near a saddle point of the surface (e.g., the point labeled S in Fig. 

1), then the noise becomes potent: it determines which basin the system falls into and therefore, 

potentially, which object it looks at. Thus the system may be thought of as mainly deterministic, 

with stochasticity playing a role at certain juncture points. The determinicity corresponds to the 

broad structural properties of language perception and reference. For example, if there is a scene 

containing a cat, and the language says, “Look at the cat,” then the landscape will be shaped so 

                                                 
1 Note that the object regions do not necessarily line up with the attractor basins, or sets of points from which the 
system gravitates to a common attractor. 
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that the system directs its gaze at the cat. But if the scene contains two cats, one of which is on a 

chair, and the language says, “Look at the cat that’s on the chair,” then, when the system has 

heard only the partial input, “Look at the cat…,” it will have a saddle point between the basins 

corresponding to the two different cats. In this case, the stochasticity will cause the system to 

fixate on one cat or the other with equal probability, assuming that there are no additional biasing 

factors. 

In an experimental trial involving a scene with multiple, clearly separated objects on a 

computer screen, attractive regions form for each object, dimpling the landscape with basins. As 

the language identifies referents of interest in the context, or gleans evidence that a particular 

region contains relevant information, the strength of the attractors is modulated. More relevant 

basins grow stronger, making them more likely to capture the current state of the system, and 

less relevant basins grow weaker. We assume that the signals arriving from sensory organs and 

other parts of the nervous system impinge only minutely (in small pulses) on the basin structure 

at each moment in time. Therefore, the attractors exhibit an inertia that serves to simplify and 

combine the information coming from a variety of modalities on a complex schedule. In this 

regard, our modeling approach contrasts with the symbol processing mechanisms of digital 

computer models of the mind, which face challenging problems of coordinating the timing of 

events related to signals arriving erratically from multiple sources. 

Many current approaches to language processing focus on interpretation of linguistic 

entities, like words or phrases, as a critical intermediate goal of processing. In contrast, our 

approach makes a complete link between perceptions (of language) and the landscape that 

specifies actions (here, movements of the eyes). We assume that linguistic interpretations arise 

emergently in this process: that is, fully formed, coherent linguistic structures sometimes occur 
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as a consequence of the combined effect of several action-oriented impulses, but they are not 

required to form fully, and indeed there may be moments when they are only partly formed, and 

cases (e.g., in some garden path sentences) when they fail to fully form. An advantage of linking 

the perceptions to the actions without insisting on fully-formed linguistic structure in the middle 

is that it confers some robustness: the system acts, regardless of whether it understands or not, 

and this action is sometimes effective (e.g., upon hearing “Grasp the skirpet under the dial,” it 

may be helpful to look under the dial, even if one has no idea what a skirpet is). The direct 

linking assumption also has the consequence that the system exhibits states of partial order that 

are not expected under standard assumptions about coherent structure formation (cf. Konieczny, 

Müller, Hachmann, Schwarzkopf, & Wolfer, 2009; Tabor, Galantucci, & Richardson, 2004). 

Here we argue that such errant structure formation predictions provide an empirical basis for 

distinguishing the current framework from other approaches. 

 

1.3. Self-organization in dynamical systems 

 

Self-organization refers to the formation of global structure among a group of 

independent but interacting elements, under restricted environmental conditions. This 

phenomenon manifests in a wide variety of settings: for example, in Rayleigh-Bénard 

convection, molecules in a fluid organize themselves into regular convection cells under 

particular conditions of temperature and viscosity (Koschmieder, 1993). Similarly, reagents in 

the Belousov-Zhabotinsky reaction form nonhomogeneous spatial patterns like stripes and spirals 

when mixed in particular concentrations (Zhabotinsky, 1991), pebbles in Greenland organize 

themselves into lenticular and ring-shaped patterns under particular conditions of surface water 
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flow and granularity (Kessler & Werner, 2003), and muscles of the human vocal apparatus 

coordinate to achieve articulatory goals under conditions in which a centralized controller is not 

plausibly the source of coordination (Kelso, Tuller, Vatikiotis-Bateson, & Fowler, 1984). There 

is a developing formal theory of self-organizing phenomena, including studies which link self-

organization to phenomena of grammar (Crutchfield & Young, 1990; Tabor, 2002) and systems 

of neural units (Haken, 2004). The current formal theory is remote from psycholinguistics partly 

because it has not been clear how this strongly bottom-up approach can address complex 

linguistic behavior. This paper extends Tabor and Hutchins’ (2004) claim that self-organization 

explains some otherwise puzzling phenomena of parsing, suggesting that it can provide insight 

into the challenging question of how parsing is integrated with general perception and action. A 

helpful outcome of the current work is that it indicates a way that the relatively macroscopic 

observations we can make about sentence-level language processing are connected to the more 

microscopic insights about particle/fluid/neural interaction that prior work on self-organization 

has established. 

 In self-organizing systems, small, interacting elements form larger, global structures. 

Global organization develops as tensions among potentially incongruous local structures are 

resolved. Impulse Processing is a self-organizing process in the sense that each impulse leaves an 

impression on the potential surface which interacts with the impressions of other impulses to 

produce structured behavior. Thus, Impulse Processing makes the prediction that even 

grammatically inconsistent bottom-up structure can form during the global organization process. 

Tabor et al. (2004) and Konieczny et al. (2009) provide evidence for one particular kind of errant 

bottom up effect, referred to as “local coherence:” in a sentence like “The coach smiled at the 

player tossed the Frisbee,” the phrase “the player tossed the Frisbee” is intended as a noun 
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phrase, with “tossed the Frisbee” as a reduced relative clause modifier on “player.” Tabor et al. 

argue that readers are temporarily distracted by the possible interpretation of the phrase as an 

active clause with “player” as its subject, even though the preceding grammatical context (“The 

coach smiled at”) seems to rule out such an interpretation. These are called “local coherence” 

effects because the locally (not the globally) coherent clause interpretation is the claimed source 

of the interference.  

  Evidence for the formation of inconsistent bottom-up structure (including local coherence 

as one type of case) has been reported in a number of language processing situations, in line with 

the self-organization hypothesis. In each case, global consistency of the relevant representations 

was not enforced by the cognitive system. Swinney (1979) and Tanenhaus, Leiman, and 

Seidenberg (1979), for example, demonstrated that even in biasing syntactic contexts (e.g., 

“spiders, roaches, and other…”), both senses of subsequent ambiguous words (e.g., espionage vs. 

insect “bugs”) were activated. Although these findings were initially taken as evidence for the 

partial independence of lexical and and syntactic modules, from the perspective of self-

organization, they represent the formation of incongruous local lexical structure, despite global 

sentential context (Kawamoto, 1993, observed these phenomena in an attractor network similar 

to the one we employ here). More recently, Kukona, Fang, Aicher, Chen, and Magnuson (in 

press) demonstrated anticipatory looks in predictive contexts (e.g., “Toby arrested the…”) to 

both contextually appropriate patients of the verb (e.g., crook), and contextually inappropriate 

agents (e.g., policeman), supporting formation of incongruous local thematic structure, despite 

sentence context. Similarly, Tabor et al. (2004) and Konieczny et al. (2009) demonstrated that 

locally coherent but globally ungrammatical words strings (e.g., the case of “The coach smiled at 

the player tossed the frisbee”) interfered with processing, supporting the formation of 
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incongruous local syntactic structure, despite global sentential context. Moreover, Van Dyke 

(2007) provides evidence that globally ruled-out structures can also form bottom-up from 

elements that are not adjacent in the speech stream (non-local coherence effects). Relatedly, 

Allopenna et al. (1998) demonstrated the activation of rhyme competitors during spoken word 

recognition in the VWP (e.g., looks to a speaker on hearing “beaker,” despite clear differences in 

onset), supporting the formation of incongruous local sub-lexical structure, despite global lexical 

context.  

Tabor and Hutchins (2004) implemented a self-organizing model of sentence processing, 

called SOPARSE, which we adopt as a component of the Impulse Processing framework. 

SOPARSE assumes that words activate “treelets” (Fodor, 1998; Marcus, 2001) which interact to 

form global syntactic tree structures. Although we do not include an implementation of 

SOPARSE in the model presented in Section 3, we make assumptions about the timing of 

structure formation in the current model that are consistent with the behavior of SOPARSE. 

 Finally, the abstractness of language seems like a challenge to the claim that perceptions 

always specify actions. The framework of self-organization offers an answer to this challenge 

that is closely tied to the phenomenon of local coherence. We take up this issue in the General 

Discussion. 

Next, we describe the visual world experiment we conducted. 

 

1.4. A dynamical systems implementation: ambiguity in the visual and linguistic signals 

 

To more carefully test the predictions of the Impulse Processing framework, we 

examined eye movements in VWP settings involving ambiguities of two types, which 
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specifically help to distinguish our approach: an ambiguity of reference (referential ambiguity) 

and an ambiguity of lexical interpretation and reference (lexical plus referential ambiguity).  

We created VWP contexts containing seven items: four items in the four corners of a 

computer screen display, a reference item (a star) between the top two items, another reference 

item (a square) between the bottom two items, and a small fixation cross in the middle of the 

screen (see Fig. 2). The participant heard a spoken instruction over headphones of the form 

“Click on [Noun Phrase],” where [Noun Phrase] either had the form “the [Noun]” or “the [Noun] 

that’s beside the [Noun].” The task for participants was to listen to each command and to click 

on the relevant location with the mouse. In simple, unambiguous cases, the participant would see 

an array like Fig. 2A or 2B, and hear either “Click on the snail” or “Click on the snail that’s 

beside the star.” Their task was to simply click on the snail, as instructed. In cases of referential 

ambiguity, the target indicated by the language was temporarily consistent with multiple images 

in the visual context: for example, “Click on the cat…” in the visual context of two cats (Fig. 

2A). In cases of lexical plus referential ambiguity, the language contained a lexical ambiguity, 

and both interpretations of the ambiguity were present in the visual context: for example, “Click 

on the bat…” in the visual context of a baseball bat and a mammalian bat (Fig. 2B). For both 

ambiguity types, a relative clause ultimately disambiguated the target referent (e.g., “Click on the 

cat/bat that’s beside the star,” such that only one cat/bat was beside a star in the visual context).  

To introduce the conceptual organization of our model, we now review its processing of 

several types of examples. First, we consider a simple unambiguous sentence which includes 

some redundancy: “Click on the snail that’s beside the star,” uttered while the model views the 

scene in Fig. 2A. In this section, for ease of exposition, we focus on describing the pulses that 

drive the model’s behavior, thus highlighting the model’s predictions. Later, in Section 3, we 
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identify guiding principles underlying the pulse structure. 

The model assigns attractive regions to items in the visual display. At the beginning of 

processing, the system has seven attractive regions, one corresponding to each of the items. 

These regions lie in the high-dimensional activation space of a neural network, which is 

described in detail in Section 3 and Appendix A. Here, to convey the principles of the model’s 

operation graphically, we use a two-dimensional space to depict a subset of the attractive 

regions, corresponding to four of the items: the snail, the glove, the star (which is beside the 

snail) and the square (which is beside the glove). 2 

The strengths of the attractive regions are indicated approximately by the circles in Fig. 3. 

The relative sizes of the radii indicate how likely the model is to fixate each item in the display. 

Initially, the regions are of roughly equal size (we assume there are no biasing factors, 

such as the visual saliency of items). Therefore, across repeated trials, the network spends 

approximately the same amount of time in each region (Fig. 3A). Since all items in the display 

are equally clickable, the words “Click on the” contain no information that favors one item over 

another, and thus the attractive regions remain the same size during the perception of these words 

(note that this would not be true of all contexts: the words “Pour the…,” for example, would 

favor items which are pourable over those which are not; Chambers et al., 2004). The arrival of 

the first informative word, “snail,” causes the region corresponding to the snail to gradually grow 

larger at the expense of the other regions (Fig. 3B). As a consequence, the system tends to spend 

more time in this region during and shortly after the utterance of “snail”.  

The arrival of the preposition “beside” causes the regions corresponding to the item next 

                                                 
2 Fig. 3 shows these four attractive regions in locations that serve as reminders of the spatial relationships between 
the items associated with the regions. However, these depicted spatial relationships between the regions in two 
dimensions do not correspond directly to the spatial structure of the corresponding neural attractive regions because 
the geometry of the four-dimensional space does not map isomorphically onto the geometry of the two-dimensional 
space. For the purposes of the present illustration, however, the differences do not matter. 
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to the region currently being fixated to expand. Fig. 3C depicts the situation in which the system 

was nearest to the attractive region corresponding to the snail when the word “beside” was 

uttered; therefore, the attractive region for the star, which is beside the snail, grows. The arrival 

of the second noun, “star,” causes the attractive region corresponding to the star to grow even 

larger, at the expense of the other regions (Fig. 3D). The net effect is that as the words “beside 

the star” are being perceived, the rate of looking at the star increases. The properties illustrated in 

the remaining frames of Figure 3 depend on syntactic interactions, which are based on the system 

of SOPARSE (Tabor & Hutchins, 2004). We discuss SOPARSE next and then return to Figure 3. 

  Impulse Processing assumes that syntactic structural interpretation happens by self-

organization, as in SOPARSE (Tabor & Hutchins, 2004; Tabor, 2006). Pieces of linguistic 

information (coming from different words) bond together to form larger interpreted chunks on a 

schedule determined by activation dynamics in a system of “syntax neurons” which are a 

component of Impulse Processing. We have not incorporated the SOPARSE implementation into 

the Impulse Processing simulation we describe in Section 3. However, the formation of syntactic 

chunks in Impulse Processing is based on the predictions of the SOPARSE framework.3 The 

bonding process for the current example is shown in Fig. 4. Note that chunks for “the snail”, 

“beside”, and “the star” form before the chunk corresponding to the unified phrase “the snail 

beside the star” forms. As each chunk comes online in SOPARSE, a neural node corresponding 

to that chunk’s tree-diagram node undergoes a rapid ramp-up in activation. One may think of the 

model as “attending” to the semantics of the chunks that are undergoing rapid ramp-up at any 
                                                 
3 This importation of mechanisms from SOPARSE, along with the stipulation of various parameters in the Impulse 
Processing implementation that we describe in Section 3, implies that our results here are not strongly “emergent,” 
in the sense that we do not derive a large variety of behaviors from just a few, low-level stipulations (e.g., a learning 
rule, and some basic assumptions about environment encoding). Instead, we include, by fiat, various specific 
mechanisms (e.g., features of SOPARSE, feature detectors at multiple scales, memory as scale-manipulation – see 
Section 4) which previous work suggests are plausibly present in self-organizing (“emergent structure”) systems in 
order to understand how these mechanisms may work together. We see this as a step toward developing a more 
unitary treatment. 
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moment in time. We assume that the succession of pulses corresponds to the successive 

attentional states of SOPARSE. Thus, the first three frames of Fig. 4 specify the pulse events we 

have so far enumerated: widening of the “snail” region during “snail” (Fig. 4A), widening of the 

star region during “beside” (Fig. 4B), and further widening of the “star” region during “star” 

(Fig. 4C). Fig. 4D specifies that after the arrival of the second noun “star,” the local structures 

begin to assemble into a complex NP (“the snail beside the star”). This causes the attractive 

region corresponding to the snail, the head of the complex NP, to grow and engulf the lion’s 

share of the action space, as indicated in Figs. 3E and 3F. 

In sum, the model predicts that a person hearing “Click on the snail that’s beside the 

star,” while viewing Fig. 2A, should first look at the snail, as a consequence of the impulse for 

“snail” (Fig. 4A), then look at the star, as a consequence of the impulses for “beside” and “star” 

(Fig. 4B and C), and then look back at the snail, as a consequence of the formation of the 

complex NP “snail beside the star” (Fig. 4D). 

More complex dynamics occur in cases involving ambiguities. Fig. 5 shows one possible 

progression of attractive region relationships upon hearing “Click on the cat that’s beside the 

star” while viewing Fig. 2A. Several features of Fig. 5 are worth noting. The arrival of the word 

cat, in a referentially ambiguous context containing two cats, like Fig. 2A, causes the attractive 

region for both cats (i.e., cat1, beside the star, and cat2, beside the square), to grow (Fig. 5B). 

This is because the concept cat is simultaneously associated with both cats in the scene. In such a 

case, as indicated above, the low-level noise in the action space causes the system to make a 

random choice between looking at cat1 and looking at cat2, but both attractors remain present 

even while the system is fixating on one particular cat. Fig. 5 assumes that the system primarily 

fixates cat2 during the utterance of “cat”. Therefore, when “beside” arrives, the system fixates 
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items beside cat2, causing the attractive region for the square to grow in magnitude (Fig. 5C). 

Subsequently, however, the word “star” arrives. Analogously to the previous example with the 

snail, SOPARSE then attends temporarily to “star” and the size of the star region grows (Fig. 

5D). Finally, the complex NP corresponding to “cat that’s beside the star” ramps up, as the local 

structures assemble into the more complex type of structure depicted in Fig. 4C. Crucially, the 

complex NP structure is unambiguously consistent with only a single item in the display, and 

thus the region for cat1 becomes dominant over all other regions. 

In sum, the model predicts that a person who garden paths on “cat” (where by “garden 

path,” we mean that the person initially focuses on the irrelevant cat in the display), while 

hearing “Click on the cat that’s beside the star” and viewing Fig. 2A, will first look at cat2, and 

then will ramp up slightly on looks to the square, then ramp up slightly on looks to the star, and 

finally will settle on looking at cat1 (on the basis of the complex NP structure). 

Fig. 6 shows a possible progression of attractive region radii on hearing “Click on the bat 

that’s beside the star” while viewing Fig. 2B. In this lexical plus referential ambiguity case, the 

development associated with the utterance of the ambiguous first noun (“bat”) is different from 

the preceding referential ambiguity case. Unrelated senses of a word (e.g., baseball bat vs. 

mammalian bat) compete, so that after brief initial activation of multiple senses in a constraining 

context, only one sense has a large attractive region. In this regard, our model is consistent with 

results from Swinney (1979), Tanenhaus, Leiman and Seidenberg (1979), and Simpson and 

Kang (1994; see also Raczaszek-Leonardi, Shapiro, Tuller, and Kelso, 2008; Rodd, Gaskell, & 

Marslen-Wilson, 2002; Seidenberg, Tanenhaus, Leiman, & Bienkowski, 1982; Simpson & 

Burgess, 1985) which indicate suppression of irrelevant senses of an ambiguous word soon after 

initial perception in a biasing context (here, the image first fixated in the visual display is the 
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biasing context). Our implementational assumptions (discussed in Section 3) in this regard are 

similar to the recurrent network implementation of Rodd, Gaskell, and Marslen-Wilson (2004), 

which treats alternative meanings of truly ambiguous words (as opposed to polysemous words) 

as mutually exclusive attractor basins. The choice of which bat is fixated is made randomly, 

driven by the noise (see Section 3). In Fig. 6, we have assumed that the region for the 

mammalian bat (bat2) is the one that grows. As a consequence, the system tends to be looking at 

the mammalian bat when the word “beside” arrives. In line with the previous examples, this 

causes the attractive region for the square to grow. Then, when the word “star” arrives, the 

region for star briefly grows. Finally, the region corresponding to “the bat that’s beside the star” 

(i.e., bat1) becomes the dominant region, on the basis of the formation of structure at the level of 

the complex NP (as in Fig. 4D), and captures the large majority of looks. 

In sum, the model predicts that a person who garden paths on “bat” while hearing “Click 

on the bat that’s beside the star” and viewing Fig. 2B, will first look at bat2, and then will ramp 

up slightly on looks to the square, then ramp up slightly on looks to the star, and will finally 

settle on looking at bat1. This progression is very similar to the referential ambiguity case 

illustrated in Fig. 5. However, there are two notable differences: First, the attractive region for 

cat1, ultimately the correct cat, is already large at the onset of disambiguation. Therefore, the 

transition from primarily looking at cat2 (Fig. 5D) to primarily looking at cat1 (Fig. 5E and F) 

happens relatively quickly. By contrast, the transition from primarily looking at bat2 (Fig. 6D) to 

primarily looking at bat1 (Fig. 6E and F) happens comparatively slowly, because the attractive 

region for bat1 has to be built up from a small size in order to capture the bulk of the looks. 

Second, because the attractive region for bat1 takes a relatively long time to become dominant, 

there is a large likelihood (compared to the referential ambiguity case) that the regions 
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corresponding to the reference items, star and square, will capture looks during this phase. Thus, 

for garden paths, where participants initially focus on the irrelevant cat/bat, the framework 

predicts that the rate of fixation on reference items during disambiguation of a lexical ambiguity 

will be greater than the rate during disambiguation of a referential ambiguity.  

 

1.5. Distinctive claims of Impulse Processing 

 

Several features of the behavioral sequences just reviewed reveal distinctive claims of the 

Impulse Processing framework. 

First, the prediction (which we will call “Prediction 1: Local coherences in unambiguous 

contexts”) that the system should switch during unambiguous processing (e.g., hearing “Click on 

the snail that’s beside the star” in the context of Fig. 2A) from looking at the first noun (e.g., 

snail), which we call the target (i.e., to be clicked on), to looking at the reference item beside the 

target (e.g., star beside the snail) is unexpected on a symbolic, information-driven view of 

parsing (Levy, 2008; Hale, 2001). 

Information-driven approaches compute only structure that is consistent with global 

constraints, not structure that is merely consistent with bottom-up constraints. If we assume that 

information-driven models “rationally” direct eye movements toward referents which are 

consistent with the global structure implied by the compositional semantics of a sentence, then 

for a sentence like “Click on the snail that’s beside the star,” where there is a clear, 

unambiguous, globally preferred referent (i.e., snail), these models most naturally predict eye 

movements to that referent. Eye movements to lower-scale structures, like the reference item 

beside the target (e.g., star), provide a challenge to such information-driven models because local 
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semantic structures are not predicted to form on these accounts (especially given that the global 

structure is already preferred, making reinterpretation unnecessary. See Levy, Bicknell, Slattery, 

& Rayner, 2009). Moreover, the star and the square are in the same positions in the display on 

every trial, including the practice trials. Thus, a person viewing the scene will not glean useful 

new information by looking at the star beside the snail (i.e., reference item beside the target).4 

Impulse Processing claims that the looking happens nevertheless because of the self-organizing 

nature of the process: each interpretation must be formed anew from bottom-up input. Long 

years of practice fixating on stars when stars are mentioned imply that the system has a strong 

bottom-up tendency to perform this action. Note, however, that self-organization straddles a 

critical line between local and global structure. Word-level models of the VWP (e.g., Allopenna 

et al., 1998; Spivey, 2007) also predict the transition in looks from the target (snail) to the 

reference item (star), but they do so because they have no global sentence-level structure. What 

is critical is that, in addition to such low level effects (Prediction 1), impulse processing also 

makes predictions about global sentence-level structure (e.g., see Prediction 3) where word-level 

models fail. 

One might suppose, though, that because of uncertainty about the behavior of the world, 

an information-driven system needs to double-check on information. Such an assumption could 

predict elevated looks to the reference item even in unambiguous context as a way of confirming 

the identity of the reference item. However, this assumption provides no reason for expecting 

more checking in the case of lexical plus referential ambiguity than referential ambiguity. Thus 
                                                 
4 It is true that structure-based prediction models like Levy (2008) predict future linguistic structures that previous 
information anticipates. For example, they could plausibly predict “star” after hearing “Click on the snail that’s 
beside the…” in a context where there is only one snail and it is beside the star. However, the model’s prediction of 
the word does not imply that it specifies looks to the referent of the word. Under our assumption that the least 
assumption-laden extension of these models to looking behaviors is that they look at objects which are likely to 
provide useful information, given the current state of the interpretation at each point in time, these theories have 
little reason to predict looks to the reference items (though see discussion of a possible alternative view in the next 
paragraph below). 
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the prediction that looks to the reference items should be greater during transition out of a garden 

path (i.e., where participants look initially to the irrelevant, non-target cat/bat in the display) in 

lexical plus referential ambiguity than referential ambiguity further distinguishes Impulse 

Processing (“Prediction 2: Local coherences in garden path contexts”). This claim mirrors a 

general property of self-organizing systems: structure is built up recursively with autonomy of all 

the subunits. Therefore, the loss of functionality at one structural scale does not usually crash the 

system; instead, it causes the system to fall back onto a lower scale of coherence. This property 

may be one of the reasons why the self-organizing mechanisms found typically in living systems 

are more robust than corresponding digital computer models which are based on brittle 

information structures (Smolensky, 1988). 

Third, on a classical information processing approach, ambiguity resolution is driven by 

symbolic computation. The information that drives the switch from one cat to the other cat in the 

resolution of the referential garden path is the same as the information that drives the switch 

from one bat to the other bat in the lexical plus referential garden path, namely, the current 

hypothesized focus object lacks the required property (e.g., being beside the star). Therefore, the 

classical approach does not predict a difference in the rate of transition under disambiguation 

between lexical and referential processing. We refer to the fact that Impulse Processing predicts 

a faster rate of transition in referential disambiguation as “Prediction 3: Differential difficulty of 

recovery from a garden path.” This prediction of Impulse Processing stems from the assumption 

that, in referential ambiguity, the attractor basin for the alternative meaning is already present, 

but in lexical plus referential ambiguity, only the attractor basin for the competitor object is 

present at the point of disambiguation.  

We turn now to investigating these predictions empirically. 
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2. Experiment 1: Ambiguity in the visual world paradigm 

 

To test the predictions of Impulse Processing, we conducted a visual world experiment 

involving the referential and lexical plus referential ambiguities described in Section 1.4.  

 

2.1. Methods 

 

2.1.1. Participants 

Twenty-five students from the University of Connecticut participated for course credit. 

All participants were native speakers of English with normal vision. 

 

2.1.2. Materials 

Lexical ambiguity (ambiguous vs. unambiguous target) was crossed with referential 

ambiguity (single- vs. two-target display) in a 2 x 2 design. Thirty-two lexically ambiguous 

homographic homophones (e.g., “bat”), containing at least two roughly equibiased noun 

interpretations, were selected (Gorfein, Viviani, & Leddo, 1982; Nelson, Mcevoy, Walling, & 

Wheeler, 1980; Wollen, Cox, Coahran, Shea, & Kirby, 1980). Thirty-two lexically unambiguous 

words (cat) were also chosen. Our unambiguous words were strongly biased toward a single 

meaning (given that few words are truly unambiguous), which we confirmed by sampling 20 

occurrences of each word from the Corpus of Contemporary American English (COCA). At 

minimum, 70% of the occurrences of an unambiguous word were consistent with the meaning 

we employed (M = 0.93, SD = 0.09), given a fairly conservative metric in which we did not 
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count figurative uses (e.g., “I commend Oprah Winfrey for reaching out with her golden 

sword…” was not counted as an occurrence of the canonical weapon sense of “sword”). The 

Kučera and Francis (1967) frequency per million of unambiguous words (M = 52, SD = 94) and 

ambiguous words across all semantic senses (M = 50, SD = 65) were balanced, t(62) = 0.09, p = 

.93, as were the number of syllables in unambiguous words (M = 1.19, SD = 0.40) and 

ambiguous words (M = 1.16, SD = 0.37) words, t(62) = 0.33, p = .75. 

 In two-target displays, two images corresponding to the target noun were present on the 

screen, in addition to two unrelated distractors. For lexically unambiguous words, two identical 

pictures of the word were present (e.g., “cat” in Fig. 2a). For lexically ambiguous words, images 

corresponding to two different semantic senses of the word were present (e.g., “bat” in Fig. 2b). 

In single-target displays, the display contained just one image of the target noun (e.g., just one 

sense of a lexical ambiguity), and three unrelated distractors. Additionally, all visual displays 

contained two reference items (star and square). In two-target displays, the potential targets 

appeared beside different reference items. 

 Eight lists were assembled to rotate the lexically ambiguous and unambiguous targets 

through the one- and two-target displays, and to counterbalance the target interpretation for 

lexical ambiguities, the position of the target relative to the reference items (i.e., beside the star 

or square), and the relative orientation of the target and competitor in the two-target displays 

(vertical or diagonal). While items rotated between referential ambiguity conditions (e.g., one cat 

vs. two cat display; one bat vs. baseball and mammal bat display), items did not rotate between 

lexical ambiguity conditions (e.g., there was not a two baseball bat display). Participants were 

presented with 16 trials in each of the four conditions, and 48 filler trials. In 32 filler trials, a 

lexical or referential ambiguity was present in the display, but these images were not the target of 
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the trial. In 16 filler trials, an image of just one sense of a lexically ambiguous word was present, 

but it was not the target of the trial. Thus, the presence of a visual ambiguity (lexical or 

referential), or an image corresponding to a lexically ambiguous word, was not a cue to the target 

of a given trial. The experiment was divided into 16 blocks of seven trials each, with the four 

critical conditions, and 3 filler types, represented in each block. The order of trials within each 

block, and the order of targets across the experiment, was randomized. Participants saw each 

critical word only once, in a single condition. 

 For each of the 64 target nouns, two sentence frames were recorded (incorporating both 

the star and square as the reference item): “Click on the bat/cat that’s beside the square/star.” 

Thus, in the two-target displays the target remained ambiguous until the reference item was 

identified. Sentences were recorded by a native female speaker of American English using Praat 

software. Our visual stimuli were color photographs with white backgrounds (see Fig. 2). 

 

2.1.3. Procedure 

Participants listened to the recorded sentences over headphones while they viewed the 

visual displays on a computer monitor. Participants were instructed to use the mouse to click on 

the target image that was identified in each sentence. Participants’ eye movements were tracked 

with an R6 remote optics eye tracker with a head-tracking device (Applied Scientific 

Laboratories, MA, USA). A 500 ms preview of the display preceded the presentation of 

sentences, and the experiment began with 10 practice trials with feedback. The full experiment 

lasted approximately 45 minutes. 

 

2.2. Results 
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2.2.1. Mixed logit modeling and growth curve analysis 

Our analyses focused on the distinctive claims described in Section 1.5: Impulse 

Processing predicts local coherences in unambiguous contexts (Prediction 1), local coherences in 

garden path contexts (Prediction 2), and differences in the difficulty of recovery from a garden 

path (Prediction 3). We used both mixed logit modeling (Jaeger, 2008) and growth curve 

analysis (e.g., Mirman, Dixon, & Magnuson, 2008; Singer & Willett, 2003), where appropriate, 

to quantify differences in the trajectories of looks over time between relevant items and/or 

conditions. Because the proportions of fixations over time to the various items in the display 

have a complex form, we did not analyze looks across the entire sentence. Rather, we focused 

our analyses on smaller temporal windows, which were time locked to relevant events in the 

speech, where we predicted differences to occur. Given the typical 200 ms lag observed between 

eye movements and information in the language (e.g., Allopenna et al., 1998), our windows were 

also shifted forward in time by 200 ms from the relevant speech events. 

For Prediction 1, in which we compare (non-independent) looks to items in the same 

display, we used mixed logit modeling, and a categorical looking measure. Our models included 

fixed effects of condition, and random effects of participant and item. 

For Predictions 2 and 3, in which we compare looks to items in separate displays, we 

used growth curve analysis. Our analyses used orthogonal power polynomials to capture linear, 

quadratic, and in some cases, cubic and quartic, effects of time on the proportions of fixations to 

items in the visual display at the condition by subject level. Effects of condition were introduced 

onto the intercept, linear, and quadratic terms, as well as the cubic and quartic terms where 

appropriate. Models also included fixed effects of subject on each term. We quantified 
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differences between conditions by examining the effect of condition on each term in the growth 

curve models. With orthogonal power polynomials (where time is re-centered), condition 

impacts the curves as follows (see Mirman et al., 2008): an effect of condition on the intercept 

reflects a difference in the average height of the curves; an effect of condition on the linear term 

reflects a difference in the overall slope of the curves; and an effect of condition on the quadratic 

term reflects a difference in the rise and fall of the curves around the center. For analyses of 

target fixations (Prediction 3), where fixation curves grew monotonically to a peak, our growth 

curve models included intercept, linear, and quadratic terms. For analyses involving non-targets 

(Prediction 2), where fixation curves grew to a peak, then sank back downward, models also 

included cubic and quartic terms (thus capturing the three inflection points in the curves); an 

effect of condition on these terms reflects differences in the steepness of the curves near the 

inflection points. 

 

2.2.2. Prediction 1: Local coherences in unambiguous contexts 

Impulse Processing predicts elevated looking to the reference item beside the cat (or bat; 

e.g., star) when listeners hear “Click on the cat/bat that’s beside the star,” even when there is 

only one cat (or bat) in the display. To test this prediction, we compared looks to the reference 

item beside the target with looks to the distractors in visually unambiguous contexts (e.g., one 

cat, or one baseball bat and no mammalian bat, or visa versa). Average proportions of fixations 

in accurate trials are plotted for lexically unambiguous words (e.g., cat) in Fig. 7A, and for 

lexically ambiguous words (e.g., bat) in Fig. 7B. The plot extends from the mean onset of the 

target noun to the mean offset of the reference item. Trials were aligned at the onset of the 

reference item. Distractor fixations reflect mean looks to the non-target and non-competitor 
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items, excluding the reference items. 

We used a temporal window that spanned between the mean onset and offset of the 

reference item (plus a 200 ms lag), and we coded trials (using a categorical outcome measure) as 

having a “look” to an item if participants looked to it at any point during the window (including 

“looks” which were launched prior to the onset of the window). We submitted the categorical 

looking measure to a mixed logit model with a fixed effect of item (reference item beside the 

target vs. distractor). For unambiguous words, the statistical model revealed a reliable fixed 

effect of item, coefficient (reference item beside the target) = 1.36, SE = 0.18, p < .001, with 

more looks to the reference item beside the target (M = 0.40, SD = 0.49) as compared to the 

distractors (M = 0.16, SD = 0.36). For ambiguous words, the statistical model also revealed a 

reliable fixed effect of item, coefficient (reference item beside the target) = 0.91, SE = 0.15, p < 

.001, with more looks to the reference item beside the target (M = 0.54, SD = 0.50) as compared 

to the distractors (M = 0.33, SD = 0.47). Both results are consistent with Prediction 1 of Impulse 

Processing. 

 

2.2.3. Garden path trials 

The remaining distinctive claims of Impulse Processing are concerned with garden paths. 

We defined garden paths as trials in which listeners made looks to the competitor but not the 

target within 500 ms of disambiguation, when the reference item was named. This garden path 

window spanned roughly the second half of the window between target offset and reference item 

onset (duration M = 856 ms), at which point we expected listeners to have fully processed the 

target word. Given the typical 200 ms lag observed between eye movements and information in 

the language (e.g., Allopenna et al., 1998), the garden path window extended from 300 ms 
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before reference noun onset to 200 ms after this point. Looks to the target, competitor, and 

reference item beside the target in garden path trials are plotted from target noun onset in Fig. 8 

(aligned at reference item onset), with the garden path window shaded gray. During the 500 ms 

garden path window, among accurate trials in the visually ambiguous condition, listeners made 

at least one fixation to the competitor and no fixations to the target on 26% of trials (i.e., garden 

paths); listeners made at least one fixation to the target and no fixations to the competitor on 

32% of trials; listeners made at least one fixation to both the target and competitor on 36% of 

trials; and listeners made fixations to neither the target nor the competitor on 6% of trials. There 

were no reliable differences in the average number of garden paths with referential ambiguities 

(M = 3.88, SD = 2.31) and lexical plus referential ambiguities (M = 4.52, SD = 1.53), t(24) = 

1.44, p = .16. 5 

 

2.2.4. Prediction 2: Local coherences in garden path contexts 

At disambiguation following a garden path, Impulse Processing predicts more looks to 

the reference item beside the target with lexical plus referential ambiguities as compared to 

referential ambiguities, given the greater influence of coherence at the simple noun phrase scale, 

and hence of the reference item, in the lexical plus referential ambiguity case. Looks to the 

reference item beside the target in accurate garden path trials, following the onset of the 

reference item, are plotted by ambiguity type in Fig. 9A. The plot extends from 200 ms 

following the onset of the reference item to 200 ms following the offset of the reference item. 

Trials were aligned at the onset of the reference item. 

                                                 
5 Identical analyses for Predictions 2 and 3 were performed without isolating garden path trials. These analyses 
revealed a similar pattern of results with referential and lexical plus referential ambiguities. However, looks to the 
target were greater across conditions, and looks to the reference item beside the target were reduced across 
conditions, when trials in which participants looked to the target during the garden path window were included. 
Here, we only report results for the garden path analyses. 
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Growth curve fits, with effects of ambiguity type (referential or lexical plus referential) 

on the intercept, linear, quadratic, cubic, and quartic terms, are plotted as curves in Fig. 9A. 

Fixations to the reference item beside the target with referential and lexical plus referential 

ambiguities differed reliably in quadratic (Estimate = -0.20, SE = 0.03, p < .0001), and quartic 

terms (Estimate = 0.10, SE = 0.03, p < .01), but not in intercept (Estimate = -0.04, SE = 0.02, p = 

.11), linear (Estimate = -0.15, SE = 0.11, p = .17), and cubic terms (Estimate = -0.03, SE = 0.03, 

p < .32). Critically, the reliable effect on the quadratic captures the reliably steeper rise in the 

lexical plus referential curve past the temporal midpoint relative to referential ambiguities, 

consistent with Prediction 2 of Impulse Processing.  

 

2.2.5 Prediction 3: Differential difficulty of recovery from a garden path 

At disambiguation following a garden path, Impulse Processing predicts a faster 

transition from the competitor to the target with referential ambiguities as compared to lexical 

plus referential ambiguities, given the larger structural transition required in the lexical plus 

referential case (note the relative sizes of the target attractor basins for cat1 and bat1 in Figs. 5D 

and 6D). Looks to the target in accurate garden path trials are plotted in Fig. 9B, across the same 

window described above for Prediction 2. Additionally, growth curve fits, with effects of 

ambiguity type (referential or lexical plus referential) on the intercept, linear, and quadratic 

terms, are plotted as lines in Fig. 9B. Fixations to the target with referential and lexical plus 

referential ambiguities differed reliably in intercept (Estimate = 0.17, SE = 0.02, p < .0001) and 

linear terms (Estimate = 0.75, SE = 0.11, p < .0001), and there was a marginal effect on the 

quadratic term (Estimate = 0.06, SE = 0.03, p = .09). For Prediction 3, the critical difference is 

not simply on the intercept, which reflects a greater average rate of looking at the reference item 
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beside the target in referential ambiguities as compared to lexical plus referential ambiguities. 

Rather, the effect on the linear term reflects the greater overall steepness of the referential curve 

supports Prediction 3, indicating a quicker recovery from the garden path in purely referential 

ambiguities. 

 

2.3. Summary 

 

The mixed logit and growth curve analyses of eye movements in Experiment 1 confirmed 

the distinctive claims of Impulse Processing described in Section 1.5. In visually unambiguous 

contexts, listeners looked reliably more to the reference item beside the target as they heard “the 

cat/bat that’s beside the…” as compared to looks to unrelated distractors. The shift in looks from 

the unambiguous target to the reference item beside the target is consistent with a locally 

coherent interpretation of the language (Prediction 1). In visually ambiguous contexts, during the 

transition from competitor to target after a garden path, listeners also looked more to the 

reference item beside the target with lexical plus referential ambiguities as compared to 

referential ambiguities, consistent with a locally coherent interpretation of the language in a 

garden path context (Prediction 2). Finally, fixation curves to the target following 

disambiguation were steeper with referential ambiguities as compared to lexical plus referential 

ambiguities, consistent with the larger structural transition required with lexical ambiguities 

(Prediction 3). 

 

2.4. Discussion 
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 The experimental findings were consistent with the predictions of Impulse Processing 

and thus provide some initial support for the framework. The experiments point to several 

additional empirical questions. We identify these here to indicate ways that alternative accounts 

could be ruled out, and ways that the current account could be falsified, thus suggesting some 

avenues for future empirical work in this area. 

 

2.4.1. Visual similarity of the referentially ambiguous stimuli 

The current design used identical images for the two referentially ambiguous items (e.g. 

cats). One might wonder if it is the visual similarity of these images that makes it easy to switch 

from one cat to the other cat. As a first check on this idea, we analyzed the looking behavior 

during the 500 ms preview interval (at the beginning of each trial, before any language was 

spoken) to see if there was any evidence for more frequent transitions between identical objects 

than between nonidentical objects. For this analysis, we constructed a 7x7 Markov transition 

probability matrix (7 equals the number of objects in the display, counting the fixation cross) for 

each subject and compared the averages of these matrices in the referential conditions to the 

average in the lexical plus referential conditions. This analysis yielded no evidence of greater 

tendency to switch between referential competitors (e.g. cat to cat) than between lexical 

competitors (e.g. bat to bat). However, this is a weak test because it is a short time window, and 

participants’ biases in the presence of language may be different from their biases in its absence. 

A stronger test would be to use different images for the two referentially ambiguous items in the 

display and to employ a visual similarity metric (e.g., offline similarity ratings) to assure that 

there is no greater similarity in the referential than the lexical plus referential trials.6 If the 

contrasts of Predictions 2 and 3 disappear when visual similarity is controlled for, the hypothesis 
                                                 
6 We thank an anonymous reviewer for suggesting the possibility of this kind of control experiment. 
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that lexical representations are mediating the garden path recovery transitions will be ruled out. 

However, there will still be a need to explain the results of the current experiment; in this case, 

the self-organization account will still be a contender, but with the adjustment that the primary 

representational revision is occurring in a visual encoding space rather than a lexical one. 

 

2.4.2. Differences between lexically ambiguous and lexically unambiguous words 

We are referring to the nouns used in the straight referential ambiguity conditions as 

“unambiguous.” In fact, very few words, including the “unambiguous” words in our design, are 

truly unambiguous. Our stimuli were chosen so that “unambiguous words” showed a strong 

asymmetry: the meanings depicted in our displays were highly preferred (these meanings were 

employed 93% of the time on average for unambiguous words in the COCA samples, and, as 

noted above, never less than 70% of the time). As noted in Materials, we also controlled the 

frequency of our items so that the overall frequency of ambiguous and unambiguous forms was 

equal. We chose this frequency control because we hypothesized that it would put the 

phonological processing of the forms being compared on an equal footing. However, one might 

argue, in parallel to the points raised about visual similarity above, that the lower frequencies of 

the ambiguous word semantics (each being roughly half the frequency of the unambiguous word 

semantics) may have made the transition easier in the referential ambiguity case. One way to rule 

this possibility out would be to use equibiased ambiguous words (rather than unambiguous 

words) as controls (e.g., while a lexical plus referential ambiguity condition would have a 

baseball bat and a mammalian bat present, a referential ambiguity condition would simply have 

two baseball bats, or two mammalian bats, present). We did not build this design because it was 

difficult to find enough reasonably frequent equibiased ambiguous words to run a within-
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participants design under these conditions. One might consider a between participants design or 

an artificial lexicon approach (e.g. Magnuson, Tanenhaus, Aslin, & Dahan, 2003). 

Finally, one could use lower-frequency words for the referential ambiguity case, thus 

equating semantic frequency rather than phonological frequency across the two conditions. 

Again, if the garden path recovery differences disappear in these cases, but the tendency to look 

at the reference items during recovery remains, then self-organization will still be a viable 

hypothesis, but the data will be suggesting that the locus of transition difficulty is in the 

frequency-properties rather than the semantic properties of lexical items. 

 

2.4.3. A symbolic (non-self-organizing) account 

It’s possible that participants look at the reference items during garden path recovery 

because (1) they are (symbolically) reanalyzing their parse and (2) they do not know what the 

new interpretation is going to be, so they position their eyes at an intermediate location on the 

screen, thus minimizing the expected length of the next saccade. Such an account predicts that 

participants should return to the fixation cross during garden path recovery (the data do not 

support this claim), but it could be assumed that the fixation cross is not a very interesting object 

so they look at the star and the square which are nearby and more interesting. This symbolic 

account can be distinguished from the self-organization account via a design in which the 

positions of the objects, including the star and the square are randomized after every trial. The 

self-organization account still predicts looks to the mentioned reference item in unambiguous 

trials and the same garden path recovery difference, but the symbolic account predicts looks to 

objects near the center of the screen in this case. 

 We feel that these further empirical projects will be especially worth undertaking if the 
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self-organization approach can be shown to be formally coherent. To that end, we next describe a 

formal model which shows that the predictions plausibly follow from the assumptions. 

 

3. Attractor network simulation 

 

In this section, we describe an implementation of the Impulse Processing framework 

described in Section 1 using a connectionist attractor network (see Fig. 10). The details of the 

model’s processing are described in Appendix A. The values of its free parameters are shown in 

Table 2. A Matlab implementation can be downloaded from 

http://solab.uconn.edu/People/Kukona/papers.html. Here we provide an overview, indicating 

how the main assumptions of the theory are implemented. 

 

3.1. Architecture 

 

The model consists of four layers of nodes: a phonological layer, a lexical semantics 

layer, a cross-word layer (i.e. a rudimentary kind of syntax layer), and an action-space layer (Fig. 

10). All of these layers employ localist representations (one unit on per concept). We do not 

think localist representations will capture many subtle aspects of meaning and behavior, but they 

are a useful, simple case to consider first in developing the dynamical picture. There are feed-

forward connections from each layer to the next and recurrent connections within the lexical 

semantic layer, the cross-word layer, and the action-space layer. The activations in the 

phonology layer correspond to (spoken) words. The activations in the lexical semantic layer 

correspond to word concepts. Activations in the cross-word layer allow the meanings of previous 

http://solab.uconn.edu/People/Kukona/papers.html
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words to affect the interpretations of subsequent words, useful for keeping track of syntactic 

dependencies. In the present study, for simplicity, we implement the syntactic constraints by fiat, 

specifying that after hearing a reference noun (e.g. “star” or “square”), the weights from the head 

noun’s concept in the cross word layer to the action layer should focus on just the relevant 

object, and the lexical semantic activations gravitate toward the corresponding concept. This 

means that our model does not implement a general theory of the encoding of syntactic 

dependencies in neural machinery (as do models like Elman, 1990, 1991; Tabor, 2000, 2003). 

Nevertheless, the cross-word layer does implement an account of the carry-over of information 

between lexical items that produces contrasts between garden path effects. Finally, the activation 

patterns in the action-space layer map onto fixation choices. Although, as indicated above, there 

were seven objects in each display, we were able to illustrate the important features of the 

dynamics by studying the interactions of units corresponding to just four of those objects. 

Additional units can be added to study interactions among more than four objects. Unlike some 

connectionist models in which particular units are statically anchored to properties in the world 

(e.g., “green at pixel 475”), we posited that nodes in the action-space layer correspond to objects 

in the visual display. In this sense, the assignment of interpretations to nodes in the action-space 

layer bears a resemblance to variable binding in the classical computational theory of mind (e.g., 

Marcus, 2001). We note that this assumption leaves a large explanatory gap with regard to the 

question of how abstract concepts are related to architecturally static neural tissue (as they seem 

to be in adult organisms). Since our purpose is not to try to solve this long-standing “symbol 

grounding problem” here, we make the simplifying assumption that concept “nodes” with 

appropriate connections are rapidly created each time a person encounters a new scene. 
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3.2. Processing 

 

The activations of the nodes range from 0 to 1. The model is interpreted as fixating object 

i when its action-space vector, a = [a1, a2, a3, a4], is closer to the i’th indexical bit vector (i.e. the 

vector with a 1 in the i’th position and 0’s elsewhere) than to any other indexical bit vector in R4.  

The phonological layer has a node for each word in the model’s vocabulary. Perception 

of a word is implemented as setting this node’s activation to 1 and setting all other vocabulary 

activations to 0 for a number of timesteps corresponding to the duration of perception of the 

word.7 We assume that, after detecting the sense of the last word in a phrase, the model detects 

the sense of the whole phrase as described in section 1.4 above (on SOPARSE dynamics).  

Each phonological unit sends a “pulse” to the lexical semantics layer at every time step 

that it is activated. This pulse influences the shape of the attractor landscape in lexical semantic 

space. A pulse from a particular word strengthens an attractor corresponding to each meaning of 

the word. In this implementation we assume that “cat” has one meaning (and hence one lexical 

semantic attractor) and “bat” has two meanings (hence two lexical semantic attractors), and that 

“beside” gently encourages the listener to look at the reference item, and “star” and “square” 

encourage the listener to look at the star and square, respectively, but more weakly than do the 

experimentally varying items (“bat”, “cat”, etc) because “star” and “square” occur on every trial 

(See Table 1).8  

The lexical semantic layer activations travel on the attractor landscape created by the 

                                                 
7 A more realistic model could employ phonetic features that ramp-up gradually in activation, as in TRACE 
(McClelland & Elman, 1986). 
8 We tested a version of the model in which both “cat” and “bat” were lexically ambiguous, but only one sense of 
“cat” ever appeared in the displays. Except for the fact that the model sometimes activated the non-present sense of 
“cat” in the lexical semantic layer when it heard the word “cat”, its behavior was similar to the current simulation 
and the same effects occurred..  
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phonological pulses. Noise is injected into their activations at every time step, creating small-

scale random changes in the trajectory. In cases of lexically ambiguous words (e.g. “bat” in the 

present simulation), the noise pushes the state into an attractor corresponding to one or the other 

of the word’s meanings.9 The effect is that the lexical semantic units tend to hover briefly at low 

activation levels when a phonological stimulus is first presented, then one of the concepts 

corresponding to that phonology rockets to its maximum level and stays there for the duration of 

the word. 

The lexical semantic units, in turn, send pulses that shape the attractor landscape of the 

cross-word layer. Unlike the lexical-semantic layer, which erases old structure when new 

structure comes in, the cross word layer captures the accumulation of information coming from 

sequenced lexical items. For example, if the words “cat beside (the) star” are presented, the 

cross-word units head, at first, toward an attractor corresponding to “cat” in general, then toward 

attractors corresponding to the reference items, then toward an attractor corresponding to “star,” 

but from the direction of the “cat” attractor so the memory of the word “cat” is still influencing 

the state, and finally toward an attractor corresponding to the particular cat that’s beside the star 

(and away from other meanings).  

The cross-word units, in turn, shape the attractor landscape in the action-space layer. If an 

object corresponding to an activated cross-word concept is present in the display, then an 

attractor develops in the action-space corresponding to that concept. When the cross-word 

activations head away from concepts related to objects in the display, then the action-space 

attractors corresponding to those objects diminish in strength.  

The action-space activations travel on the attractor landscape created by the cross-word 

                                                 
9 A more sophisticated version of the model could employ feedback from visual perception, so that if the system 
were fixating on one kind of “bat”, then the visual bias, instead of random noise, would push the lexical semantic 
representation in the direction of the matching interpretation. 
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pulses. As with the lexical semantic activations, noise is injected into the action-space activations 

at every time step. The noise plays an exploratory role for the visual system, causing the system 

to sometimes look at objects other than the one it is currently fixating on. The system’s tendency 

to switch objects is a function, simultaneously, of the fixed noise magnitude and the attractor 

strengths, which vary in response to the incoming words.  

We ran the simulation 20 times to model the collection of data from 20 different 

“listeners.” Each simulation consisted of 16 trials with referential ambiguities, 16 trials with 

lexical plus referential ambiguities, and 16 trials with visually unambiguous contexts. We 

defined garden paths for referential and lexical plus referential ambiguities as trials in which the 

model was not fixating the target item between the midway point for the pulse for “beside” and 

the onset of the critical noun (cat/bat). 

 

3.3. Results 

 

Our analyses of the performance of the model closely parallel the analyses of the 

behavioral data in Experiment 1. As in Experiment 1, we used mixed logit modeling and growth 

curve analysis to quantify differences in the trajectories of simulated looks over time between 

relevant items and/or conditions. Our aim is to show that, with respect to the predictions of our 

theory, the model exhibits the same significant contrasts as the human data do.  

 

3.3.1. Prediction 1: Local coherences in unambiguous contexts 

Impulse Processing predicts greater looks to the reference item beside the target (e.g., 

star) during “beside the star,” even in an unambiguous context, as compared to the unrelated 
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distractors. Simulated average proportions of fixations to the reference item beside the target and 

the unrelated distractor in the unambiguous context are plotted in Fig. 11, beginning at the 

preview window which preceded sentence onset (with looks to the target also plotted). For the 

analysis, we used a temporal window that spanned between the onset and offset of the pulse for 

the complex NP (using a categorical outcome measure) as having a “look” to an item if there was 

a look to it at any point during the window. We submitted the categorical looking measure to a 

mixed logit model with a fixed effect of item (reference item beside the target vs. distractor). The 

statistical model revealed reliably more looks (Estimate = 0.80, SE = 0.31, p < .01) to the 

reference item beside the target (M = 0.94, SD = 0.23) as compared to the distractor (M = 0.88, 

SD = 0.32). 

 

3.3.2. Prediction 2: Local coherences in garden path contexts 

At disambiguation following a garden path, Impulse Processing predicts greater looks to 

the reference item beside the target with lexical plus referential ambiguities as compared to 

referential ambiguities, given the greater reliance on local structure following a garden path in 

the lexical case. Simulated average proportions of fixations to the target, competitor, and 

reference item beside the target in garden path trials are plotted for referential and lexical plus 

referential ambiguities in Fig. 12, beginning at the preview window which preceded sentence 

onset. Simulated average proportions of fixations to the reference item beside the target are 

plotted by ambiguity type as symbols in Fig. 13A. The plot extends between the onset and offset 

of the pulse for the complex NP. Growth curve fits, with effects of ambiguity type (referential or 

lexical plus referential) on the intercept, linear, quadratic, cubic, and quartic terms, are plotted as 

curves in Fig. 13A. Fixations to the reference item beside the target with referential and lexical 
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plus referential ambiguities differed reliably in intercept (Estimate = -0.12, SE = 0.02, p < 

.0001), linear (Estimate = -0.78, SE = 0.16, p < .0001), quadratic (Estimate = -0.10, SE = 0.03, p 

< .01), cubic (Estimate = 0.15, SE = 0.03, p < .0001), and quartic (Estimate = 0.09, SE = 0.03, p 

< .01) terms. The reliable intercept difference reflects the greater mean height of the lexical plus 

referential curve as compared to the referential curve, consistent with Prediction 2, and the 

pattern in Experiment 1 (although not the precise curvature; see below). 

 

3.3.3 Prediction 3: Differential difficulty of recovery from a garden path 

At disambiguation following a garden path, Impulse Processing predicts a more rapid 

transition to the target with referential ambiguities as compared to lexical plus referential 

ambiguities, given the greater structural change required following a garden path in the lexical 

case. Simulated average proportions of fixations to the reference item beside the target are 

plotted by ambiguity type in Fig. 13B, across the window described for Prediction 2. Growth 

curve fits, with effects of ambiguity type (referential or lexical plus referential) on the intercept, 

linear, and quadratic terms, are plotted as lines in Fig. 13B. Fixations to the target with 

referential and lexical plus referential ambiguities showed a reliable effect in the linear term 

(Estimate = 0.26, SE = 0.04, p < .0001), a marginal effect in the intercept (Estimate = 0.04, SE = 

0.02, p = .07), and a non-reliable effect in the quadratic term (Estimate = -0.04, SE = 0.04, p = 

.29). The marginal difference in the intercept term suggests a higher average rate of looking at 

the target in the referential case, and the reliable difference on the linear term indicates a faster 

recovery from the garden path in referential rather than lexical plus referential trials. Both of 

these results are consistent with Experiment 1, except that the model curves rapidly coincide 

after the syntax takes over (see Figure 12), while the human data show a much more gradual 
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convergence. 

 

3.4. Discussion 

 

The simulations show how the assumptions of the Impulse Processing framework can be 

formalized and how the three touted predictions follow from the assumptions under this 

formalization. In this section, we outline the main insights provided by the simulation, and we 

identify shortcomings of the model, suggesting avenues for future development. 

The simulation shows how the assumptions outlined in intuitive terms at the beginning of 

the paper can give rise to data patterns very similar to the ones we observed in Experiment 1. In 

particular, the attractors at the conceptual and action-space levels can be implemented with 

positive on-diagonal elements and negative off-diagonal elements in the weight matrices for 

these layers. Although we did not implement learning of the encodings here, this kind of 

encoding arises via well-known Hebbian or Delta Rule learning processes in recurrent networks 

where the elements are mutually exclusive. Thus the simulation suggests the viability of 

attempting to derive the weights of these layers via learning (however it will be important to test 

this claim with an implemented learning model). In the cross-word layer, we employed a form of 

normalized recurrence (Spivey, 2007) because this kind of feedback among units provided an 

appropriate degree of spreading of the influence of information across time. Although we 

implemented syntactic constraints by fiat in the weights issuing from this layer in the current 

simulation, it is again possible that these weights could be learned, thus providing insight into 

how to predict real-time processing of words in a syntactic context.10 In fact, we tried for a long 

                                                 
10 The currently most successful attractor based model of syntactic processing, the Simple Recurrent Network 
(Elman 1990, 1991) can predict word sequencing data, but it provides no explicit model of within-word temporal 



IMPULSE PROCESSING 41

time to construct the model with only the phonological, lexical semantic, and action-space layers 

present. It turned out to be hard for one layer (the lexical semantic layer) to both quickly resolve 

the lexical ambiguity (bat vs. bat) and yet keep the memory of “cat” around while it was 

processing the disambiguating word (“star” or “square”), so that the lexical representation of 

“cat” could influence garden path recovery.11 Although the success of this model does not prove 

that a syntax layer is necessary, it nevertheless suggests an effective formal way to integrate 

lexical and syntactic ambiguity resolution in a network attractor-model context. 

It seems, at first, that there is a paradox in the juxtaposition of our empirical findings with 

the well-known results on multiple-access of ambiguous meanings in the literature, which we 

cited above (e.g., Swinney, 1979; Tanenhaus et al., 1979). Our effects depend on claiming that 

one meaning of an ambiguous word can be suppressed in such a way that there is a cost 

associated with resurrecting it later. The well-known results from the literature indicate that both 

meanings of an ambiguous word are initially enhanced. According to the model, however, there 

is no conflict between these findings. The difference is in the timing. Our experiment with 

human participants indicates that the suppression of the irrelevant meaning needs to have 

occurred by several words downstream from the onset of ambiguity (e.g., at “star” in “the bat 

that’s beside the star”). On the other hand, the well-known findings on multiple access indicate 

that activation of the contextually irrelevant meaning is near baseline by three syllables 

(Swinney, 1979) or 600 ms (Tanenhaus et al., 1979) following the offset of ambiguity.12 In fact, 

                                                                                                                                                             
processing in syntactic contexts, as the current model does. 
11 A more sophisticated version of the model would allow the reference word to impose the syntactic constraints in a 
context-sensitive way. In this case, the recovery from the lexical garden path will require recurrence (memory) in the 
phonological layer, so that the alternative lexical sense can be discovered. 
12 There is an important difference between those studies and ours in that in ours, the context did not resolve the 
ambiguity until the reference word (“star” or “square”) arrived, but in theirs, the preceding context resolved the 
ambiguity, Nevertheless, our model claims, the ambiguity gets resolved quickly: small biases pushing the system 
one way or the other end up reinforcing each other through the recurrent connections causing the system to rapidly 
select an interpretation. This, then, is a prediction of the model: the referential/lexical ambiguity differences 
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a test of the model’s lexical semantic activations showed elevated activations of the to-be-

rejected sense relative to baseline for about 24 time steps, or about one-third of a word duration, 

starting from the onset of the ambiguous word.13 In this sense, the model predicts both kinds of 

effects. The early multiple activation occurs because the (unbiased) phonological information 

positions the system on a ridge (“separatrix”) between two attractor basins and drives the system 

along this ridge toward a saddle point which is associated with both senses (See Figure 1). Only 

when the noise pushes the system off the ridge does one meaning get the upper hand and shut the 

first meaning down (recall that we are treating noise as a stand-in for the biasing aspects of 

specific contexts.)  

The current implementation has several shortcomings. For simplicity of design and 

analysis, we used localist encodings of phonology, lexical semantics, cross-word representations, 

and action-space representations. Distributed encodings would allow the model to capture 

representational similarity effects (see further discussion in Section 4.2 below). The model is 

sensitive to the values of its free parameters: the strengths of the phonological pulses, the rates of 

convergence of the recurrent subnetworks, the initial activations of recurrent units, the magnitude 

of the noise, the word durations (See Tables 1 and 2). If these values are too small or too large, 

the attractors fail to develop and the activations either stay at baseline levels or the model gets 

stuck in the first attractor basin it falls into. We find it encouraging that the model only shows a 

few qualitatively different kinds of behavior. Nevertheless, it would be desirable to set the 

parameters in a principled way. For the phonological pulse magnitudes, this may be achieved by 
                                                                                                                                                             
observed here should not occur or should be reduced in magnitude if the syntactic disambiguating information 
arrives while both senses of lexically ambiguous words are still activated. 
13 The findings with humans in the literature generally detect the multiple activations starting from the offset of 
ambiguous words. We suspect that this difference from the model stems from the fact that natural language spoken 
words only become uniquely recognizable after several phonemes have been spoken and because the process of 
activating a complex natural language representation takes more time than activating the very simple localist 
representations employed here. Further probing of a more realistic version of the model (e.g. with TRACE-like 
inputs) is a natural next step in this regard. 
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learning. Finally, it is desirable to implement a principled encoding of syntactic structure, 

including its recursive aspects. 

 

4. General Discussion 

 

4.1. Summary 

 

We have outlined a solution to the problem of information integration in support of 

action, called Impulse Processing, which models eye movements in the VWP according to 

principles of self-organization. Central to our proposal is the claim that structure at one scale is 

built upon structure at lower scales: thus, Impulse Processing predicts local coherence 

phenomenon in the VWP, which we have confirmed in an empirical study and an implemented 

model. 

 

4.2. Relation to prior work 

 

As we noted in the introduction, a number of dynamical systems proposals have been 

advanced which model the integration of spoken and visual information in the VWP. These 

proposals form an essential foundation for our project, and we incorporate many of their insights 

into the present work: for example, continuous activation values, feedback connections, and 

melding of different sources of constraint in an interactive activation framework. Now, through 

careful comparison of our account with these projects, we clarify some of the ways that the 

current work contrasts with and/or extends these approaches. 
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Allopenna et al. (1998) examined the fine-grained temporal dynamics of spoken word 

recognition in the VWP. In a behavioral study, they instructed people to pick up a target item in a 

visual array. They found that the amount of looking to each item in the array (i.e., to the target 

itself, and to items sharing a phonological onset or rhyme) was predicted by lexical activations in 

TRACE (McClelland & Elman, 1986), an attractor model of spoken-word recognition that takes 

spoken, but not visual information, as its input. Allopenna et al. (1998) also observed a kind of 

local coherence in eye-movement behaviors: looks to competitor items that shared a rhyme, but 

not an onset (e.g., beaker – speaker). Despite the clear difference in onsets, listeners were more 

likely to look to rhymes than to unrelated distractors that shared no phonological overlap with 

the target (e.g., carriage). This result is closely related to the reference item looks we observed, 

suggesting the formation of localized structure, as predicted by self-organization. 

However, Allopenna et al. (1998)’s model is only partially constrained by the visual 

information. For purposes of simulating looks (using the Luce choice rule, given activation 

across the entire lexicon), they restricted their analysis to only those nodes in TRACE that 

corresponded to objects in the visual display, thus emphasizing the dynamics of the linguistic 

portion of the signal, and not the visual portion (see also Tanenhaus et al., 2000). Spivey (2007) 

modified this TRACE-based approach to allow feedback from the visual component to influence 

the dynamics: he simulated Allopenna et al.’s behavioral findings with a recurrent network with 

three layers: a lexical layer, with word nodes fed raw activation levels from TRACE, a visual 

layer, with object nodes activated when an object was present in the display, and an integration 

layer, which connected the lexical and visual layers. Like Spivey (2007), we have allowed both 

visual and verbal information to modulate the dynamics. However, neither Spivey nor Allopenna 

et al.’s approaches handle structure above the lexical level: note that if TRACE were fed the 
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words in a phrase like “The cat that’s beside the star” in succession, at the last word in the 

sentence, it would continue looking to the star, although behaviorally listeners return to the cat 

implied by the larger phrasal structure. The model we have implemented, takes a step toward 

clarifying how dynamical models like these might approach the challenge of integrating syntax-

level information across words in sentences.  

The dynamical systems approach we have proposed, however, is not the first to address 

sentence processing in the visual world. Mayberry et al. (2009), for example, simulated 

anticipatory looking behaviors (e.g., Altmann & Kamide, 1999, 2007, 2009; Knoeferle & 

Crocker, 2006, 2007) in the visual world using an augmented simple recurrent network (SRN; 

Elman, 1990) that processed sentence-level input. Behaviorally, listeners robustly use 

information from the language and the visual context to anticipate upcoming linguistic referents. 

For example, Altmann and Kamide (1999) showed that listeners hearing “The boy will eat 

the…” were more likely to look at edible objects like a cake, as compared to inedible objects like 

a ball or truck, as predicted by the verb in the sentence. Accordingly, Mayberry et al. (2009) used 

a multi-layer network, with recurrence in the hidden layer, to predict role assignment of 

arguments in a scene, given the visual and linguistic contexts. They presented their model (CIA-

NET) with both word-by-word (German-based) sentences, as well as visual contexts depicting 

scenes. The task of their model was to activate a filler-role representation of the event within the 

scene that the language referred to (each scene was assumed to contain two possible events). 

Consistent with the behavioral data, the model can use information from the linguistic signal up 

through the verb (e.g., “The princess is painting the...”), and information from the visual signal 

(e.g., a pirate who is washing a princess who is painting a fencer), to anticipate the direct object 

predicted by the union of the language and the scene (e.g., fencer). Also consistent with the 
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behavioral data, the model favors visual information over stereotyped linguistic information 

when they conflict: given “The pilot was spied on by the…,” for example, in a visual context 

depicting a wizard who is spying on a pilot who is being fed by a detective, the model 

anticipated the wizard, consistent with the visual context, and not the detective, a stereotypical 

and predictable agent of the verb spy based on the language. Thus, the model is highly sensitive 

to the relationship between sentence-level structure in the language, and interactions among 

different items in a visual context. 

A very appealing property of the Mayberry et al. (2009) model is that, as an SRN, it 

learns to relate visual and linguistic information, and to use this information to focus looks 

appropriately. Although the network we have described is not a learning model, it is nevertheless 

compatible with such an approach. We assume, for example, that the linguistic pulses that 

modulate the network’s action landscape reflect learned associations between stereotyped (eye- 

movement) behaviors, linguistic contexts, and visual contexts. Consistent with robust behavioral 

findings, Mayberry et al.’s model also acts anticipatorily. In this regard, we also found evidence 

for a kind of anticipation: listeners tended to fixate the reference items as they heard “beside,” 

before “star” or “square” was named in the sentence, a behavior exhibited by our model. Our 

model demonstrated this anticipatory behavior because of the semantics assigned to each pulse. 

The effect of the pulse for “beside,” for example, is to deepen the attractor basins for the 

reference items, which are beside the item usually being fixated at this point in the trial. This 

definition of the effect of beside is a pure stipulation in our model, unlike in Mayberry et al.’s. 

We think it plausible that experience with the word “beside” induces a context-independent 

tendency to look at objects beside the object currently being looked at.14 This assumption about 

                                                 
14 We also implemented a version of the model in which the response to beside was contingent upon which object 
the model was currently looking at. This version produced the same pattern of results as those reported here. 
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adult behavior is consistent with a learning paradigm that drives an organism toward helpfully 

exploratory behavior (e.g., Oudeyer, Kaplan, & Hafner, 2007; Sutton & Barto, 1998).  

The Mayberry et al. (2009) model, however, is limited in a number of ways. First, the 

output of the model consists of looks to holistic scenes: for example, the model might activate a 

scene involving a princess who is painting a fencer, rather than a pirate who is washing a 

princess. However, the model does not generate looks to individual items within each scene (e.g., 

princess versus fencer). At a finer level of analysis, listeners do look to individual items in the 

display. Additionally, Mayberry et al.’s model makes the assumption that listeners have a rich 

mental representation about the relationships between all items in a display: for example, their 

model assumes that listeners do not simply know that a pirate, princess, and fencer are present; 

they also know precisely what each item is doing to all of the other items. However, there is 

evidence to suggest that listeners often store only a minimal amount of information about items 

in a visual context (Ballard, Hayhoe, Pook, & Rao, 1997), according to the task at hand. 

Additionally, there is the problem of understanding how listeners could grapple with very rich 

visual contexts, in which items are interacting in an infinite number of ways, like we might 

encounter in the real (visual) world. By employing a combinatorial generation mechanism – the 

looking behavior in Impulse Processing arises from the combination of pulses created by the 

word sequence and the context – our model is situated to exhibit an appropriately open-ended 

variety of behaviors. 

Roy and Mukherjee (2005) have also addressed the integration of sentence-level and 

visual information in VWP-like settings. Their model (Fuse) is a probabilistic rule model which 

is trained to interpret referential expressions about items in a visual context, and to find the items 

identified by the language. Fuse processes sentences incrementally, by generating a probability 
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distribution across the items in a visual context, based on their fit with the language. As each 

new word is processed, Fuse modulates the distribution of probabilities across the visual display. 

As Fuse processes an utterance like “The large green block in the far right beneath the yellow 

block and the red block,” for example, it first allocates higher probabilities to large blocks in the 

display (“The large…”), then to large green blocks (“…green…”), then to large green blocks on 

the right (“…block in the far right…”), and so forth. 

Like Mayberry et al. (2009)’s CIANET, Roy and Mukherjee (2005)’s Fuse has the 

desirable trait that it learns to perform its task: it is trained on corpora of real language spoken by 

real people about real visual contexts. Like our model, Fuse also “interprets” complex referring 

expressions. Unlike our model, however, and the others we have discussed, Fuse is not explicitly 

a model of eye movements: Roy and Mukherjee interpret the model’s probability distributions as 

distributions over attentional foci. If one assumes that attentional foci correspond to fixation 

locations, then the model can be interpreted as a model of eye movements. Under this 

assumption, the model makes incorrect predictions about the fixation patterns associated with 

complex noun phrases: to arrive at an interpretation, the model divides the complex noun phrase 

into sub-phrases, such that one phrase identifies the target (e.g., “The large green block…”), and 

the other phrase identifies landmark items (akin to our reference items) that serve to 

disambiguate the target (e.g., “beneath the yellow block and the red block”). As the model begins 

to process the noun phrase identifying the landmark item, its attention shifts to the landmark item 

in the visual context, rather than remaining on the target item (e.g., higher probabilities are 

allocated toward yellow and red blocks which are above a large green block, rather than toward a 

large green block which is below a yellow and red block). Thus, in processing the last word in 

“The cat beside the star…,” Fuse would allocate a higher probability to the star in the display, 
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although behaviorally listeners return to the target. 

Interesetingly, although Roy & Mukherjee do not address the issue in their discussion, 

Fuse appears to exhibit local coherence behaviors. Roy & Mukherjee (2005) plot the distribution 

of probabilities to visual objects during the processing of “The large green block…” in a visual 

context containing large green blocks and small green blocks. The probability bars 

accompanying the figure suggest that while their model allocated the highest probabilities to 

large green blocks, it also allocated elevated probabilities to small green blocks, which were at 

least consistent in color with the language, as compared to small red blocks, for example. Like 

looks to rhymes (e.g., Allopenna et al., 1998), and the looks to reference items that we observed, 

this suggests the formation of local structure despite incongruence with the global context. This 

behavior of the model is likely a consequence of the way individual words impinge on the 

system’s probability distributions. Each word (e.g., “green”) is mapped to consistent items in the 

visual context, and these context-independent probabilities are multiplied together as a sentence 

is processed. While this independence assumption about the effect of words on the system 

recapitulates the notion of bottom-up priority, it is nevertheless limited, in so much as it cannot 

naturally handle more complex expressions (e.g., the model does not shift attention from the 

landmark to the target after hearing the modifying clause of a complex noun phrase; instead, the 

reference of the whole phrase is computed independently of the locus of attention). 

Our dynamical systems approach is generally consistent with the feature-based approach 

of Altmann and Kamide (2007, 2009). These authors are especially concerned with results from 

the visual world that indicate that listeners do not simply look to items in a visual context as they 

are named, but that listeners also look to items which are related in any number of ways with the 

language. Their theoretical approach provides a rich account of a large number of results from 
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the VWP: for example, looks to a rope on hearing “snake” as a consequence of physical featural 

overlap (Dahan & Tanenhaus, 2005), and looks to a trumpet on hearing “piano” as a 

consequence of categorical featural overlap (Huettig & Altmann, 2005; see also Yee & Sedivy, 

2006). Their proposal assumes that entities in the language (e.g., words) and in the visual world 

(e.g., objects or images) activate corresponding representations in our mental world: mental 

representations which are featural in composition, and which include information about the form, 

function, associations, and so forth, of the words and visual objects being processed. Their 

proposal assumes that a visual representation receives a boost in activation when it shares 

features with a linguistic representation, increasing the likelihood of a saccade to that object in 

the display. Such effects can be predicted by recurrent networks like the one we describe here 

that use distributed codes: the featural encodings of distinct entities overlap. Consequently, if one 

object gets activated, it will partially activate other objects that share features with it. This kind 

of behavior is well-documented in recurrent networks, closely related to ours, with feature 

overlap (e.g. Kawamoto, 1993; McClelland & Kawamoto, 1986; McRae, de Sa, & Seidenberg, 

1997; Harm & Seidenberg, 2001, 2004). For simplicity, and because our focus is not on feature 

overlap effects, we have used localist encodings in the current model, and thus do not consider 

fine-grained semantic and physical feature overlap, although this is not a necessary restriction. 

An important question for future modeling research in this area is whether the same sentence 

processing dynamics can be sustained when more complex distributed codes are used in the 

recurrent layers. 

 

4.3. The abstractness of language 
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As we noted in the introduction, one may well wonder if a theory that directly connects 

language and action can handle abstract uses of language. What about situations where an action 

specified by language is not immediately carried out (e.g., hearing on the telephone, “Could you 

pick up a quart of milk on the way home?”) or where the language evinces a mental change that 

does not require any physical response (e.g., “You see, the morning star and the evening star are 

one and the same object!”)? 

An in-depth discussion of these issues is not within the scope of this paper. Nevertheless, 

we note that the approach we have outlined has a reasonable answer to this question: In Impulse 

Processing, perceptions modify a landscape that specifies actions. But the shape of the landscape 

at any point in time, and the location of the system on the landscape, is determined by the 

perceiver’s cumulative interaction with the environment. So the obvious action specified by a 

particular piece of language (e.g. “pick up a quart of milk”) may not dominate the behavior at the 

moment the utterance occurs. It is useful to think about this issue in terms of contrasting 

structural scales. In the model discussed above, we considered examples in which the referent of 

a modifying noun (e.g. “star”) attracted some looks during the utterance of a complex noun 

phrase (e.g., “the cat that’s beside the star”) during the time when the modifying noun was being 

spoken. However, this tendency was modulated by the strength of the attractor of the head noun, 

as indicated by the comparison of referential (i.e., cat) and lexical plus referential (i.e., bat) 

ambiguities. Since the scale of the head noun attractor was relatively large compared to the scale 

of the modifying noun, the influence of the modifying noun on the looking behavior was 

minimal (e.g., given the large attractor basin for cat1 in the garden path case; see Fig. 5). 

Relatedly, we hypothesize that, when someone hears a statement that refers to events 

associated with a remote time, as in the milk example, then, although there is an effect on the 
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action landscape of the hearer at the time of perception of the request, this effect is a relatively 

small deformation. It will cause some minimal activation of motor-related neural pathways 

associated with the process of purchasing milk, but it will not cause the person to leap up and 

begin milk-purchasing activities at the moment. This is because the current situation constraints 

cause the magnitude of the deformation of the prospective action to be minimized in relation to 

the magnitude of deformations related to the task at hand (in this case, talking on the phone). In 

the milk purchasing case, we assume that the deformation caused by the request, though small, 

sticks around in a portion of the mental space of the person connected with her plans for 

traveling home, and, at the appropriate point in the journey, the small deformation becomes 

enlarged to the point where it causes appropriate action (e.g., driving into the parking lot of a 

store that sells milk, etc.) Similarly, in the case of an abstract mental revision, like learning the 

common identity of the morning star and the evening star, Impulse Processing claims that the 

comprehender’s landscape for action is revised at a small scale when the utterance occurs, and 

this deformation becomes enlarged later at points where it becomes relevant (e.g., acts of 

drawing a diagram of the solar system).  

In the restricted domain of syntactic comprehension on a seconds-long timescale, where 

words that occur at one point in time constrain the possibilities for words at certain future points, 

Tabor (2000, 2003, 2009) discuss a neural activation framework, called fractal grammars, that 

works according to the scale manipulation principle just outlined. Although the attractors in this 

framework do not modulate behavior at the millisecond timescale appropriate for modeling eye-

tracking data, the framework nevertheless suggests that neural memory manipulation could be a 

matter of scale manipulation. 

This scale-manipulation view is generally consistent with accounts which ground abstract 
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conceptual knowledge in perceptual and motor systems (e.g., Barsalou, 1999; Barsalou, 

Simmons, Barbey, & Wilson, 2003), and is supported by data on neural responses to language 

which indicate neural activation in regions relevant to the action associated with the language in 

the absence of overt muscular responses (e.g., Moody & Gennari, 2009; see also Pulvermüller. 

2005). We hypothesize that these neural responses are weak versions of the activation dynamics 

that would take place if the person actually engaged in the action described by the language. The 

view is also consistent with the finding that when people are asked to imagine a described scene 

while viewing a blank wall, the scan paths of their eyes resemble those they would produce if 

they were actually viewing the scene (e.g., Spivey & Geng, 2001). In this case, the blank wall 

provides such a weak global context that the eye movements that are naturally associated with 

the words are not suppressed and can be detected. This view also helps explain how the strongly 

input-driven self-organization approach is compatible with the finding that different task 

constraints produce very distinct scan-path characteristics for the same image (e.g., Yarbus, 

1967) – the task constraints amplify different attractor basins. 

We suggest, then, that Impulse Processing is a sufficiently flexible framework to make 

headway on the problem of integrating multiple, loosely coordinated information sources, and 

that the framework makes distinctive, empirically justified predictions, and that it has a plausible 

take on the well-known challenges of handling concrete and abstract language in a common 

framework. 
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Appendix A 

(An implementation can be downloaded from 

http://solab.uconn.edu/People/Kukona/papers.html) 

The values of the free parameters in the model are shown in Tables 1 and 2. 

The activation dynamics in the concept layer are implemented by the following 

equations: 

  linhibppulselinhibwll t −⋅+= )1( [1]

  ∑ ⋅=
j

jiji lwllnetl [2]

  lexnoisellnetldtll iiii +−⋅⋅⋅=Δ )1( [3]

where ppulset is the lexical semantic weight matrix specified by the current phonological input, 

wll is a scaled and recentered version of that matrix which produces attractors of appropriate 

strength, linhib is the strength of inhibition among mutually inconsistent lexical semantic units, li 

is the activation of the ith lexical semantic unit, and dtl is the base rate of change of the lexical 

semantic units. The lexical noise always distorts the activation toward the middle of lexical 

semantic space: 

 μμ ⋅−−⋅= )5.0( ilsigngmalexnoise  [4]

where μ is a uniform noise distribution on [0, 1], and μmag scales the noise. Equations [1]-[4], 

have the effect of creating attractive regions in the concept space corresponding to the 

meaning(s) of the phonology being activated.15 

                                                 
15 Equation [3] is a single equation that combines the excitatory and inhibitory equations used in 

other language processing models like Interactive Activation (McClelland & Rumelhart, 1981), 

and TRACE (McClelland & Elman, 1986), but without the decay terms used in those models. It 

http://solab.uconn.edu/People/Kukona/papers.html
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The crossword activations derive from the lexical semantic activations as follows: 

  j
j

iji lwclnetc ⋅=∑ [5]

  ii netcdtcc ⋅=Δ [6]

 
∑

=+

j
j

i
i tc

tcdtctc
)(

)()(  [7]

where wcl is the matrix of weights from the lexical semantic layer to the cross-word layer, ci is 

the activation of the i'th cross-word unit, and dtc specifies the base growth rate of cross-word 

activations. Equation [7] implements a form of normalized recurrence similar to the normalized 

recurrence of Spivey (1996, 2007). The normalization causes the influence of preceding 

information to fade slowly when new information comes in, thus producing cross-word 

interactions. 

 The cross-word activations specify the self-weights of the action-space dynamics: 

  j
j

ijii cwacwaa ∑= [8]

where wac is the weight matrix from cross-word space to action-space and waa specifies the 

action space recurrent connections. waaij = -ainhib for i ≠ j, where ainhib is positive. The action-

space dynamics are similar in form to the lexical-semantic dynamics:  

  ∑ ⋅=
j

jiji awaaneta [9]

  fixnoiseaanetadtaa iiii +−⋅⋅⋅=Δ )1( [10]

where ai is the activation of the i’th action-space unit and dta is the base growth rate of action-

space activations. The fixation noise is given by: 
                                                                                                                                                             
creates a sigmoidal response in the lexical semantic units as a function of net input. 
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 ηη ⋅−−⋅= )5.0( iasigngmafixnoise  [11]

where η is a uniform noise distribution on [0, 1], and ηmag scales the noise. 

 The activation update implied by equations [3], [6], and [10] takes place via an update 

computation of the form: 

  xtxdttx Δ+=+ )()( [12]

The activations of the lexical semantic units, the cross-word units, and the action-space 

units are all initialized to the same small value, actinit, in the range (0, 1). In the limit as the 

growth rates, dtl, dtc, and dta go to 0, the activation change equations [3], [6]/[7], and [10] 

approximate differential equations which are invariant on the unit hypercube in the respective 

spaces. Since we intend the discrete equations as approximations of the continuous equations, 

and we assume that the noise models a physical process which is subject to the same constraint, 

we restrict the activations to this range, moving the value of any given dimension back inside the 

space if it ever strays out.  
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Figure captions 

Figure 1. A three-dimensional rendering of a dynamical potential surface with attractor basins, 

and a saddle point at point S. An example trajectory of the system is depicted. Four regions 

corresponding to objects are depicted on the two-dimensional topographic portrait on the floor of 

the plot. When the system is above the region corresponding to a particular object, it fixates on 

that object. 

 

Figure 2. Visual world displays depicting (A) a referential ambiguity with two cats, and (B) a 

lexical plus referential ambiguity with a baseball bat and a mammalian bat. Reference items (the 

star and square) were centered between the top and bottom items for purposes of disambiguating 

the target. The star and square appeared in the same positions on every trial. Listeners were 

instructed to “Click on the cat/bat that’s beside the star/square.” 

 

Figure 3. Diagram illustrating changes in the attraction strength of each object during the 

processing of “Click on the snail that’s beside the star” in the visual context of one snail and 

unrelated distractors (e.g., glove). 

 

Figure 4. Processing of the complex noun phrase “the snail beside the star” by SOPARSE. Solid 

lines indicate strong links between nodes, and dashed lines indicated weak links. 

 

Figure 5. Diagram illustrating changes in the attraction strength of each object during the 

processing of “Click on the cat that’s beside the star” in the visual context of one cat beside a star 

(cat1: target), and another cat beside a square (cat2: competitor). 
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Figure 6. Diagram illustrating changes in the attraction strength of each object during the 

processing of “Click on the bat that’s beside the star” in the visual context of a baseball bat 

beside a star (bat1: target), and a mammalian bat beside a square (bat2: competitor). The figures 

depict a garden path trial, in which the system fixates the competitor until the offset of the first 

noun. 

 

Figure 7. Average proportions of fixations to the target, reference item beside the target, and 

(mean) distractors with lexically unambiguous (A; e.g., cat) and ambiguous (B: e.g., bat) words 

in visually unambiguous contexts (e.g., one cat, or one baseball bat and no mammalian bat, or 

visa versa) in Experiment 1. Standard error bars are shown, along with mean onsets and offsets 

for the target noun and reference item (dashed lines). 

 

Figure 8. Average proportions of fixations to the target (△), competitor (▽), and reference item 

beside the target (□), with referential (A) and lexical plus referential (B) ambiguities in garden 

path trials in Experiment 1, where listeners looked to the competitor but not the target within 500 

ms of reference onset (+ 200 ms). Standard error bars are shown, along with mean onsets and 

offsets for the target noun and reference item (dashed lines). 

 

Figure 9. Average proportions of fixations to the reference item beside the target (A) and target 

(B) in garden path trials in Experiment 1. Black symbols indicate referential ambiguities (e.g., 

two cats), and white symbols indicate lexical plus referential ambiguities (e.g., baseball bat and 
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mammalian bat). Standard error bars are shown, along with the mean reference item offset 

(dashed line). Curves indicate model fits from the growth curve analyses for Predictions 2 (A) 

and 3 (B). 

 

Figure 10. Architecture diagram for the artificial neural network used in Simulation 1. 

 

Figure 11. Simulated average proportions of fixations to the target, reference item beside the 

target, and distractors with lexically unambiguous words (e.g., cat) in visually unambiguous 

contexts (e.g., one cat) in Simulation 1. Standard error bars are shown, along with onsets and 

offsets for the linguistic pulses as follows: pause | cat1 | beside | star | cat1 (complex NP). 

 

Figure 12. Simulated average proportions of fixations to the target (△), competitor (▽), and 

reference item beside the target (□) with referential (A) and lexical plus referential (B) 

ambiguities in garden path trials in Simulation 1. Standard error bars are shown, along with 

onsets and offsets for the linguistic pulses as follows: pause | cat/bat2 | beside | star | cat1/bat1 

(complex NP). 

 

Figure 13. Simulated average proportions of fixations to the reference item beside the target (A) 

and target (B) in garden path trials in Simulation 1. Black symbols indicate referential 

ambiguities (e.g., two cats), and white symbols indicate lexical plus referential ambiguities (e.g., 

baseball bat and mammalian bat). Standard error bars are shown, along with the mean onset and 

offset of the reference item. Curves indicate model fits from the growth curve analyses for 
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Predictions 2 (A) and 3 (B). 
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Tables 

Table 1. Phonological pulses: Each phonological pulse is an nsem x nsem matrix where nsem is 

the number of nodes in the lexical semantic layer. (In this implementation nsem = 5. The five are 

bat-mammal-sense, bat-baseball-sense, cat, star, square). When the word corresponding to the 

pulse is being spoken, this matrix specifies the dynamics in the lexical semantic layer via 

Equation [1] in the Appendix. The matrices are hand-wired to reflect the semantics/pragmatics of 

each word. (bm = mammal bat, bb = baseball bat, ca = cat, st = star, sq = square). 

“bat” pulse 

 bm bb ca st sq 
bm 1 0 0 0 0 
bb 0 1 0 0 0 
ca 0 0 0 0 0 
st 0 0 0 0 0 
sq 0 0 0 0 0 
 

“cat” pulse 

 bm bb ca st sq 
bm 0 0 0 0 0 
bb 0 0 0 0 0 
ca 0 0 1 0 0 
st 0 0 0 0 0 
sq 0 0 0 0 0 
 

 

“beside” pulse 

 bm bb ca st sq 
bm 0 0 0 0 0 
bb 0 0 0 0 0 
ca 0 0 0 0 0 
st 0 0 0 0.2 0.2 
sq 0 0 0 0.2 0.2 
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“star” pulse 

 bm bb ca st sq 
bm 0 0 0 0 0 
bb 0 0 0 0 0 
ca 0 0 0 0 0 
st 0 0 0 0.4 0 
sq 0 0 0 0 0 
 

“square” pulse 

 bm bb ca st sq 
bm 0 0 0 0 0 
bb 0 0 0 0 0 
ca 0 0 0 0 0 
st 0 0 0 0 0 
sq 0 0 0 0 0.4 
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Table 2. Values of free parameters in the Simulation. 

Parameter Description Parameter Symbol Value 

Initial activation of all recurrent units 
(lexical sem., cross-word, action 
space) 

actinit 0.01 

Time constant for lexical semantics 
dynamics 

dtl 2 

Time constant for cross-word 
dynamics 

dtc 0.05 

Time constant for action space 
dynamics 

dta 1 

Inhibition between lexical semantics 
units 

linhib 0.5 

Inhibition among action space units ainhib 1 

Noise magnitude, lexical semantics 
units 

μmag 0.05 

Noise magnitude, action space units ηmag 0.15 

Word length (timesteps) (also = the 
duration of the phrasal pulse) 

wtime 80 
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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Figure 10.
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Figure 11.



IMPULSE PROCESSING 84

 

Figure 12.
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Figure 13. 


